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1. Introduction

To infinity and beyond! These famous words from our beloved space ranger capture the
essence of the journey we are to take into the limitless realm of mathematics.

Whether or not you have studied upper-level mathematics, you have most likely heard
of infinity. Endless, boundless, and enormous are some words that may come to your mind
when you think of the term. We use the term as a concept rather than a specific number.

However, did you know that there are different kinds of infinities, some bigger than
others?

German mathematician Georg Cantor was one of the first explorers of infinity. He
utilized sets to venture into the infinite, uncovering some truly fascinating results. On
our voyage, we will visit two of Cantor’s most intriguing findings. As a consequence of
Cantor’s Theorem, we will initially come across the intriguing concept that there is no
"largest" set. Additionally, we will unveil the existence of different kinds of infinity, where
one infinity is greater than the other, and the uncountable nature of real numbers.

2. Historical Background

Infinity has always been considered, in a numerical sense, a very large number. There
had been a dispute among mathematicians on whether infinity can be used in rigorous
mathematics. Many believed that the concept was more philosophical than mathematical.
Mathematicians of the time also made a distinction between potential infinity and actual
infinity. The set of natural numbers {0, 1, 2, 3, ...} was considered potentially infinite.
This was because while each number has a successor and you could never count all the
naturals, at any given point while counting, only a finite number of naturals would have
been counted. This makes it potentially infinite but not infinite in actuality.

However, let’s consider the integers in ascending order: {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
Notice that at any point, there are an infinite number of integers before it. Thus, past

24



mathematicians referred to the set of integers as actually infinite. The few mathemati-
cians that did indeed support the notion of infinity were referring to the sets that are
potentially infinite and not those that are actually infinite.

Quoting Aristotle’s physics, "The infinite has a potential existence... There will not
be an actual infinite." A more modern mathematician, Carl Friedrich Gauss, expressed
a similar view in a letter to Schumacher dated 1831: "I must vehemently protest against
your use of the infinite as something consummated, as this is never permitted in mathe-
matics. The infinite is but a façon de parler, meaning a limit to which certain ratios may
approach as closely as desired when others are permitted to increase indefinitely." The
French phrase "façon de parler" translates to "figure of speech." In this context, Gauss
says that infinity is more of a figure of speech used to describe large quantities in general
and not a well-defined number. This was Gauss’ response to those mathematicians who
would use infinity just as you would an ordinary number. Widely regarded as one of the
brightest mathematicians, even Euler had treated infinity in such a way. He had stated
that 1/0 is infinite and 2/0 is twice as large as 1/0.

However, Cantor challenged the views held by most mathematicians up until the 19th
century. He accepted both potential and actual infinity. Notice that the set of integers
could be rewritten as {0,−1, 1,−2, 2, ...} (the order of elements is irrelevant in a set). This
way, it would be the same type of infinity as the set of natural numbers. Hence, making
the distinction between actual and potential infinity moot. Cantor also went ahead and
showed that there is a different way to classify the infinities: enumerable (countable) and
non-enumerable (uncountable).

Expressing such views was nothing short of an act of rebellion by Cantor, as his ideas
were in direct opposition to those held by the brightest minds of his time. Thus, his ideas
were widely criticized and even mocked at the time.[2]

3. A Primer on Sets and Functions

First, we must familiarize ourselves with some of the tools we will use in our exploration.
This will ensure that our voyage is as pleasant and comfortable of an experience as
possible.

A set is a collection of things. These things could be planets, animals, countries, etc.,
but in mathematics, they are usually numbers. A set can also be a collection of other
sets. The things in a set are called its members or elements. We write x ∈ A to denote
that x is an element of the set A.

We can represent a set by listing out its elements. For example: B = {2, 3, 5}. We
can also represent a set by a property. All things that satisfy the property would be
elements of the set. For example: The set C = {x | x is a prime number less than 6}
would contain the elements 2, 3 and 5.

A set Y is a subset of set Z if and only if all the elements of set Y are members of
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set Z. If Y = Z, then Y is an improper subset of Z and all other subsets of Z are proper.
Y ⊂ Z denotes that Y is a subset of Z. Note that the empty set {}, the only set with
no elements, is a subset of all sets.

Let A = {1, 2, 3, 4} and B = {3, 4}. B ⊂ A since all the elements of B, namely 3 and
4, are also members of A. In fact, B is a proper subset of A.

The set of all such subsets, proper and improper, of A is called the Power Set of A,
denoted as P (A) . In our example,

P (A) ={{}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3},
{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3, 4}}

The cardinality of a set is the number of elements in it. The cardinality of the set
A is 4, and the cardinality of the empty set is 0. |A| denotes the cardinality of set A.

Now that we have covered the basics of sets, let us move on to functions. A function
defines a mapping between two sets where every element in a set is uniquely mapped to
an element in the other set.

Consider the followings sets: K = {a, b, c} and M = {x, y, z}. Let us define a function
f between K and M as in Figure 1.

Figure 1: Bijective Function f : K
∼−→ M

This function can also be represented as a set of ordered pairs: f = {(a, x), (b, z), (c, y)}

The domain and range of a function are sets defined as:

• Dom f = {x|(x, y) ∈ f}

• Ran f = {y|(x, y) ∈ f}

The codomain of f is the set of all possible values you can map to. In our function
the codomain would be the set M . Note that the range is a subset of the codomain.

In our above example, Dom f = {a, b, c} = K and Ran f = {x, y, z} = M

The domain of the above function is K while the range and codomain are both M .
In each mapping, the element in the domain is called a pre-image, and it is uniquely

mapped to its corresponding image in the co-domain.
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Function f mentioned above is known as a bijective function. A function is bijective
if and only if it is both injective and surjective.

Figure 2: Many-to-one and Into Figure 3: Many-to-one and Onto

Figure 4: One-to-one and Into Figure 5: One-to-one and Onto

Figure 6: Different types of functions

A function is injective or one-to-one if and only if all elements of the domain are
mapped to unique images in the codomain. In other words, no two pre-images share the
same image. Conversely, a function that isn’t one-to-one is a many-to-one function.

A function is surjective or onto if and only if its range is equal to its codomain. This
means that every element in the codomain has a corresponding pre-image. A function
that isn’t surjective is an into function. Exmples of the different types of functions can
be seen in Figure 6.

Having understood the concept of cardinality and the different types of functions, we
can state the following:

• |X| = |Y | ⇐⇒ ∃ a bijection between X and Y [1]

With the basics out of the way, we are now prepared to begin our exploration. To
infinity and beyond!
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4. Cantor’s Theorem

What do you think the largest set is? Take a moment to mull that question over. Now,
consider this: no matter how large a set you have in mind, I can present you with one that
is even bigger. It’s quite fascinating, isn’t it? The power set of any set you can imagine
will surpass its size. And if we continue, exploring the power set of that power set, the
size expands endlessly. This prompts a question: Does the concept of the "largest” set
exist? The answer is no, there does not exist a "largest" set. In the following section, we
will prove this as a corollary to Cantor’s theorem on the cardinality of power sets.

Theorem 1. The power set of a set A has a cardinality greater than the cardinality of
A. i.e.,

|A| < |P (A)|

In other words, Cantor’s theorem tells us that a power set always has more elements
than the set itself.

To prove this theorem, we shall show, in two parts, that |A| is neither greater than
nor equal to |P (A)|. Thus, leaving us with only the possibility that |A| is strictly lesser
than |P (A)|.

Proof. Let us consider set A and its power set P (A). First, we shall show that the
cardinality of A is not greater than that of P (A).

For every element x ∈ A, a corresponding element {x} exists in P (A) . Thus, the
cardinality of A cannot be greater than that of its power set.

Next, we need to show that the cardinality of A is not equal to that of P (A). We are
going to prove this by contradiction. So, let us assume that the cardinalities of A and
P (A) are equal. This would mean that there exists a bijection from A to P (A). i.e.,

∃f : A
∼−→ P (A)

In our mathematical universe, at the start of every space voyage, a captain must be
democratically chosen by the crew. If we were to ask any crew member, they would have
a list of candidates who they think should run for captaincy.

Let set A comprise all the crew members that voted in the elections. The subset
related to any given person, say James for example, are those he thinks would make a
better captain than most. Let this relation from the person to their list be the bijective
function f. It is possible that James is a part of his own list. If this is the case, then let
us call James (and others like him) “Vain”. Alternatively, if they are not a part of their
own list, let us call them “Humble”.

To put this in mathematical terms we have,

V (for “Vain”) = {x ∈ A |x ∈ f(x)}
H (for “Humble”) = {x ∈ A |x /∈ f(x)}
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Now let us look at H ⊂ A, the set of all humble people in A. Given our assumption
that f is bijective, there must be some person, say Tara, in A that believes only humble
people (those in H) should be the captain.

Mathematically, given that f is a bijection, there exists some m ∈ A such that f(m) =

H.
Surely, Tara must be either humble or vain, but not both.
However, if Tara is humble, she must be in H. This means that she is on her own list

of ideal candidates, which makes her vain.
If Tara is vain, she is not in H. But then she is not a part of her list, which makes

her humble. i.e.,

t ∈ H =⇒ t /∈ f(t) =⇒ t /∈ H

t /∈ H =⇒ t ∈ f(t) =⇒ t ∈ H

In both the cases, we get a contradiction. Hence, our only assumption that there exists
a bijection from A to P (A) must not be true.

This means that the cardinality of A is not equal to that of P (A).
We have proved that the cardinality of A is neither greater nor equal to the cardinality

of P (A). Thus, we can conclude that the cardinality of P (A) is strictly greater than the
cardinality of A.

Corollary 1. There is no “largest” set.

Let us prove this by contradiction. We call a set A “larger” than another set B if the
cardinality of A is greater than that of B.

Let set K be the largest set. We know that there exists the power set of K, P (K).
From our assumption that K is the largest set we get, |K| > |P (K)|.
This is a contradiction to the above-mentioned and proven Cantor’s theorem. Hence,

our only assumption that K is the largest set must be false.
Thus, there does not exist a set that is larger than all other sets.

5. Types of Infinity: Countable and Uncountable

Consider the following sets: A = {1, 2, 3} and B = {p, q, r}. If we were asked to compare
the sizes or cardinalities of these two sets, we could do so easily. We can count the
elements in each set individually and compare the two. Here, |A| = |B| = 3. This
method of counting the elements works well for smaller finite sets. The method, although
cumbersome, is possible for larger finite sets as well. However, it isn’t possible to count
sets with an infinite number of elements. In this case, an alternative method is used. To
conclude that two sets are of the same size, we need to be able to pair up all elements of
the two sets. If we tried pairing up the elements of A and B in order, we would get the
following ordered pairs: (1, p), (2, q), (3, r). Since each element in A is paired up with an
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element in B, we can say that A and B are of equal size. Note that we have essentially
shown that there exists a bijective function between A and B with our ordered pairs.

Now, let’s look at a set with infinite cardinality. The set of natural numbers starts at
1, and each successive element increases by 1, continuing on until infinity.

N = {1, 2, 3, 4, 5. . . }

Although this set has an infinite cardinality, we can list the elements if we are patient
enough. This is possible because, between any two natural numbers, there is a finite
number of natural numbers. There is a discrete nature to this set that makes it possible
to count it. However, not all sets are listable this way. The set of all real numbers is
uncountably infinite. This signifies that even the most resilient among us cannot list all
the elements in this set. This is because the set encompasses not just infinitely larger
numbers similar to the natural numbers, but also an infinite continuum of real numbers
between any two distinct real numbers. The cardinality of this set surpasses that of the
set of natural numbers. This means that despite both sets having an infinite number of
elements, one set’s infinity is larger than the others.

To gain a better understanding of this abstract mathematical concept, let’s delve into
a space analogy. Consider the following two scenarios: a single universe and a multiverse.
Arya, the ambitious astrophysicist, wants to compile a comprehensive list of all existing
stars. In the first scenario, which involves a single, boundless universe, there would be
an infinite number of stars. However, Arya could start his list by focusing on the stars
closest to him and gradually expand outward. As he reaches stars ten light years away,
he would have an infinite number of stars left to list. Nevertheless, he can be certain that
he has listed all stars within the ten-light-year radius that he has covered. This mirrors
the concept of natural numbers—an infinite set, yet countable.

Now, envision Arya living in the second scenario: a multiverse. Here, the complexity
deepens. Not only are there infinitely numerous stars within each universe, but there’s
also an infinite count of these boundless universes. However, that’s not all. Between any
two distinct stars, an infinite number of additional stars exists. This scenario parallels
the intricacy encountered when grappling with the set of real numbers.

6. The Uncountable Real Numbers

Theorem 2. The set of all reals is uncountably infinite. Mathematically,

|R| ≠ |N|

Proof. Let us consider the set X = (0, 1). X is the set of all the real numbers between 0
and 1, excluding both 0 and 1 themselves. We can show that R, the set of real numbers,
is uncountably infinite by proving that X is uncountably infinite. This is because X is a
proper subset of R. We will prove that X is uncountable by contradiction.
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Let us assume that X is a countably infinite set. i.e., |X| = |N|. This means that
there exists a bijection f : N ∼−→ X. So, for each element in the set of natural numbers,
n maps to a decimal number as shown below.

1 7→ 0.d1,1d1,2d1,3d1,4d1,5...

2 7→ 0.d2,1d2,2d2,3d2,4d2,5...

3 7→ 0.d3,1d3,2d3,3d3,4d3,5...

4 7→ 0.d4,1d4,2d4,3d4,4d4,5...

5 7→ 0.d5,1d5,2d5,3d5,4d5,5...

...

Since N is the “smallest” infinity, X must be “larger” than N if |X| is not equal to |N|.
To prove this, we must show that the above function f is not a bijection. We can prove
that by disproving the surjectivity of f . To show that f is not surjective we must find
a decimal number in R that does not have a pre-image in N. That is, we need to find a
unique real number that is not in our above-shown list.

Let us build this unique number in steps, one for each natural number. In step 1, we
will define the first decimal place, in step 2, we will define the second decimal place, and
in step k, we will define the kth decimal place.

Let us begin creating our unique real number. In step 1, k = 1, we define the first
decimal place in the number. We will denote the number in the first decimal place by p1.
While picking a number in step 1, we need to make sure that p1 ̸= d1,1. We do this to
make sure that our final number is unique from the first number in our list. To do this,
let

p1 = d1,1 + 1, if d1,1 ̸= 9

p1 = 0, if d1,1 = 9

By these rules, we make sure that p1 ̸= d1,1.
We continue to define pi for all k ∈ N using the same rules as for p1. i.e.,

pk = dk,k + 1, if dk,k ̸= 9

pk = 0, if dk,k = 9

Thus, we can be sure that pk ̸= dk,k.
After completing all our steps, we will have a sequence p1, p2, p3, p4, p5, ... Using this

sequence we can construct a new real number p.

p = 0.p1p2p3p4p5...

This number is unique and not on our list. As if it were, then f(k) = p for some
k ∈ N. However, the kthdecimal place of f(k) is different than the kth decimal place of p
by the rules we set while defining p. Which means the numbers differ from each other.
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Therefore, p is not on our list. Meaning that f is not a surjection. This is a contradiction
to the fact that f is a bijection. Therefore, our only assumption that X is countable
must be false.

Thus, we have that X and in turn, R is an uncountably infinite set.

7. Conclusion

In this exploration, we were able to uncover fascinating results about infinity guided by
Georg Cantor. We explored the idea that there is no largest set and that even the most
patient among us cannot count the set of real numbers. In closing, our exploration of
infinity comes to an end. Just as astronauts return with new perspectives on our universe,
I hope this expedition has ignited a newfound fascination with the boundless realm of
mathematics.
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