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1. What is Beach Math?

You’re on the beach. Sun on your skin, feet in the sand, waves crashing in the distance.
Your mind begins to wander, and it wanders towards a math problem you once saw many
weeks ago, but never had the time to think about. You want to understand the solution,
but not because you have to. Beach Math represents these kinds of problems. Problems
done for fun, and problems which show that math is not just useful, but enjoyable!

Disclaimer: The difficulty of these problems is subjective, and they are meant to be
challenging for the average reader. Do not be discouraged!

2. Problems

2.1. Calm Waves (Easy)

Compute
√
2 +

√
2 +

√
. . ..

Calm Waves Extension 1

Compute 1 + 1
1+ 1

1+ 1
...

.

Calm Waves Extension 2

(Proposed by Ojas Mishra). Prove
√
2 +

√
2 +

√
. . . = 2 rigorously.
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2.2. Rough Waters (Medium)

Suppose two circles of radius 1 are placed such that each circle passes through the center
of the other circle. What is the area of the overlapping region?

Rough Waters Extension 1

Suppose three circles of radius 1 are placed such that each circle passes through the center
of the other two circles. What is the area of the overlapping region?

Rough Waters Extension 2

Suppose two circles of radius 1 are placed such that the circle’s centers are distance
√
2

apart. What is the area of the overlapping region?

√
2
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2.3. Tsunami (Hard)

(1989 Putnam A4). Suppose I pick a number α between 0 and 1. Can you always devise
a game between us, using a fair coin, where the probability of me winning is α?

Tsunami Extension 1

What if the coin is unfair, i.e. flips on one side with probability p and the other side with
probability 1− p for p ̸= 1

2
? How can we answer the same original question using such a

coin?

Tsunami Extension 2

What if you want to decide a winner among a group of multiple people using a fair coin,
where each person has some probability of winning pi? What about an unfair coin?

Tsunami Extension 3

On average, how many flips should our final “binary expansion” game take using a fair
coin? What about the other games from Extension 1 and Extension 2?

3. Solutions

Calm Waves

Let x =
√
2 +

√
2 +

√
. . .. Then x =

√
2 + x. Square both sides to give x2 = 2 + x, and

rearrange to give x2 − x − 2 = 0. Factoring, we obtain (x − 2)(x + 1) = 0, giving the
solutions x = 2 and x = −1. Of course, x = −1 is an extraneous solution, giving x = 2

as the correct solution. Thus,

√
2 +

√
2 +

√
. . . = 2

Rough Waters

The image shown is a classic Venn Diagram, and this problem asks us to compute the area
of the central region shared by both circles. However, this region is a bizarre one, and
we don’t immediately know a formula for computing its area. How should we proceed?
Commonly, when one runs into a problem they have not encountered, they should proceed
by breaking down the problem into subproblems! If we can break this region down
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into parts, where we can compute the area of each part, we will be able to compute the
area of the whole region.

There are four important points on the boundary of this region.

A B

C

D

Let’s connect them with lines to split the region up.

A B

C

D

We can see that the region is comprised of 2 triangles and 4 “bananas”.

A B

C

D

We know how to compute areas of the triangles, but what about the bananas? The
key insight is that each banana is just a sector minus a triangle.

A B

C

A B

C
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Let’s clean things up algebraically. Let A be the area of the whole region, T be the
area of the triangle, B be the area of the banana, and S be the area of the sector. Thus,
we have

A = 2T + 4B = 2T + 4(S − T ) = 4S − 2T

A = 4S − 2T

We are left with computing S and T . First, let’s compute T . Note each triangle is an
equilateral triangle of side length 1. Using some geometry, we obtain the below picture.

A B

C

E1
2

1
2

1 1√
3
2

60◦ 60◦

30◦ 30◦

This gives T =
√
3
4

. Note the height h = |CE| can be obtained by using Pythagorean
Theorem, or by recalling the formulas for the sides of 30− 60− 90 triangles. Because the
triangles are equilateral, the sectors have central angle 60◦, and thus comprise 1

6
of the

total area of each circle.

A B

C

60◦

Because each circle has area πr2 = π, each sector has area π
6
. Putting it together, we

have
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A = 4S − 2T

= 4
(π
6

)
− 2

(√
3

4

)

=
2π

3
−

√
3

2

which constitutes ≈ 39.1% of each circle’s area. Quickly checking this result visually,
we see that our answer is reasonable.

Tsunami

3.0.1 The Solution: Starting Off

Although this problem is easy to state, a major challenge of solving it is clearly under-
standing its meaning. What defines a “game” using a fair coin? There seem to be an
infinite number of games we could play, with many different kinds of rules! It is always
good to start off solving a hard problem by considering basic examples, and doing so
slowly. Often people will brave the tsunami in a shaky boat, erroneously under the im-
pression that they are sailing a sturdy ship. In our case, this ship is our understanding.
We must first conquer the small waves and strengthen our ship – otherwise, we have no
chance of conquering the tsunami!

3.0.2 Basic Games

With this in mind, let’s consider some simple values of α, for which we should construct
simple games. For example, what if α = 0? Can you make a game, using a fair coin,
where the probability of me winning is 0? Indeed, consider the following game:

I lose.

This game is not very fun. What if α = 1? Can you make a game, using a fair coin,
where the probability of me winning is 1? Consider the following game:

I win.

I like this game. We should play it more often. Although seemingly trivial games,
they serve as important first steps to constructing a full solution. At least we know how
to stay afloat in the kiddie pool. Now, let’s make it a bit deeper. What if α = 0.5? Can
you make a game, using a fair coin, where the probability of me winning is 0.5? Consider
the following game:

133



Flip the coin.

If it flips H, I win. If it flips T, I lose.

Indeed it is clear that for this game, I have a 50% chance of winning. The added twist
from before is that we are now using the results of the coin flip, combined with the fact
that the coin is a fair coin, to construct our game and obtain our probabilistic guarantee.
Pushing further, we can solve the α = 0.25 case:

Flip the coin twice.

If it flips HH, I win. Otherwise, I lose.

Of course, here we apply the fact that the coin flips are independent events, and so
the probability of flipping HH is 1

2
· 1
2
= 1

4
. We now see that we can use the results of

multiple coin flips to determine the winner. The α = 0.125 (i.e. α = 1/8) case can be
solved similarly:

Flip the coin three times.

If it flips HHH, I win. Otherwise, I lose.

It seems values of α of the form α = 1/2k can be solved using the natural extension
of this strategy:

Flip the coin k times.

If it flips HHH...HHH︸ ︷︷ ︸
k

times, I win. Otherwise, I lose.

What about values of α with denominators of the form 2k, but with arbitrary numer-
ators? For example, what about α = 5/8? We know flipping a fair coin 3 times gives
23 = 8 results of equal probability. Thus, we could just pick 5 of them to be winning for
me, and the other 3 to be losing!

Flip the coin three times.

If it flips HHH, HHT, HTH, HTT, or THH, I win. Otherwise, I lose.

Convince yourself that for the above game, I will win with probability exactly α = 5/8.
This strategy can be generalized to any α = i/2k.

Flip the coin k times.

For some i outcomes, I win. Otherwise, I lose.

134



Because there are 2k equally likely outcomes resulting from k coin flips, I will win this
game with probability α = i/2k. Our ship can brave an Olympic pool, but there is still a
crucial challenge which must be overcome. We must be able to make games for all values
of α between 0 and 1, but there are still many values of α for which we are stuck. For
example, what about α = 1/3?

3.0.3 Looping Games

At the moment, our games take the form of flipping a coin some number of times, and
then counting some number of the results as “winning” and the rest as “losing”. It is hard
to see how to move beyond this general structure. What other games can we cook up
using a fair coin? Laying on the beach, left with only you, the ocean, and your open
mind, you may imagine a game with a completely different feeling.

Flip the coin.

If it flips H, I win. Otherwise, flip again.

This key new rule – “flip again” – will allow us to sail the seas with strength. The
game above is a bit silly, because I will always win. I can never lose! Thus such a game
solves the α = 1 case, which we have already addressed. Despite this redundancy, we can
modify it to produce more interesting results:

Flip the coin twice.

If it flips HH, I win. If it flips HT or TH, I lose. Else, flip twice again.

How can we compute the probability of me winning? This can be done directly, by
considering the probability I win on the first round, the second round, and so forth,
summing all of these probabilities together. Instead, we can be a bit more clever and
compute this probability recursively. If α is the probability of me winning, then after the
two coin flips I have probability 1/4 of winning immediately, 1/2 of losing immediately,
and 1/4 of continuing the game (and later winning with probability α). Thus we can say

α =
1

4
+

1

4
· α

where the left is the probability of me winning by definition, and the right is the
recursive computation! Solving for α gives α = 1/3. And now, we have broken into
new territory. If we want a quick intuitive interpretation of this result, we can see that I
win with 1 state (HH), and I lose with 2 states (HT and TH). Further these states are
equally likely. Thus the probability of me winning should be α = 1/3! This motivates
the generalization of our new looping game:

Flip the coin k times.
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For some i outcomes, I win. For some j outcomes, I lose. Else, flip k times again.

Our intuitive interpretation gives α = i/(i+ j) as my winning probability, and indeed
the recursive computation (as well as the direct computation) produces the same result.
From here we can see that given any rational α = a/b, we can choose i, j, k to make a
valid looping game with winning probability α! This is left as an exercise for the reader.

Our ship is strong, and it can brave the high seas. But, it is not yet able to truly
conquer the tsunami, and this can be seen by considering what values of α for which we
must still construct games. Specifically, we have devised games for rational values of α
. . . but what about irrational values of α? For example, what about α = π/4? Looping
games cannot work here. As before, we must add a new twist to our game structure, a new
element which allows us to break outside of rational α’s. This final piece is the hardest
to find. To do so, we should begin by deeply considering the limitations of our current
strategy. We will eventually motivate our next major change using a deep computational
argument.

3.0.4 Abstracting our Current Games

First, let’s abstract our current games (basic and looping), to better understand why we’re
stuck with only producing rational values of α. First, we perform an initial flipping
section, where we flip the coins k times. Then, we perform a looping section, where
we keep re-flipping the coins if they produce one of the “looping outcomes.” Lastly, we
perform a final decision section, where we decide whether I win or I lose based on the
non-looping outcomes. In our basic games, this looping section was empty – we only
flipped the coins k times, and immediately made our final decision! The point though is
that all of our current games fit into this general framework.

Initial Flipping

Looping Section

Final Decision

We can elaborate further by including the general instructions for each section.

Initial Flipping: Flip coins.

Looping Section: Repeat: If coins are part of the looping outcomes, flip coins again.

Final Decision: If coins are part of the winning outcomes, I win. Otherwise, I lose.

For example, consider our looping game from before, where we flipped the coin k times,
had some i winning outcomes, some j losing outcomes, and some 2k − i − j remaining
looping outcomes.
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Initial Flipping: Flip the coins k times.

Looping Section: Repeat: If coins are part of the 2k − i− j looping outcomes,

flip coins again.

Final Decision: If coins are part of the i winning outcomes, I win.

Otherwise, the coins are part of the j looping outcomes, and I lose.

As mentioned, our more basic, non-looping games fit into this general framework,
only with an empty looping section. Any kind of game with this basic structure will have
a rational α winning probability of α = i/(i + j), which as previously described can be
shown in multiple ways. Through our abstraction, it’s clear we must think outside of the
box here to conquer irrational α’s.

Let’s go even deeper. It seems as though there’s simply too many α’s, and not enough
games we can currently make! At the same time, though, there are an infinite number of
α’s, but also an infinite number of games we could make, by changing the values of i, j, k.
How could this be possible? How is it possible for the number of α’s to be infinite, and
the number of current games to be infinite, and yet it still seems there are not enough
games?

Here is where we can utilize mathematical notions of infinity to prove this observation.
Such notions are tied to the work of Georg Cantor, Kurt Gödel, and Alan Turing, arguably
some of the most important mathematical work of the 19th and 20th century. Crucially,
we note there are an uncountable number of α’s in [0, 1]. Are there only a countable
number of games we can currently design? If so, can we show it?

Indeed, the simple requirement that each game must be described in finite char-
acters in English is enough to show the number of games we can currently design is
countable! The proof is simple and deep. Every game which can be described in a finite
number of characters can be encoded as a unique natural number (ex. via conversion of
the characters to ASCII). Thus, the number of such games is at most the cardinality of
N, which is countable!

3.0.5 Infinite-Length Games

From this observation we can see the only way to conquer irrational α’s is to allow games
with an infinite list of instructions. Such games must still be guaranteed to terminate,
though, in order to produce a winner and a loser. This is not necessarily a contradiction,
as we will see soon.

Now, we scratch our heads. Suppose we are given an irrational α. For example,
suppose we have α = 0.783 . . . . How can we somehow encode α, using a single fair coin,
into a game, where we allow an infinite number of instructions? Well, the “infinite” part
of α comes from its decimal expansion. We want to encode α using a fair coin, which can
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only flip “heads” or “tails”. What if, instead, we considered the binary expansion of α?

α = 0.1100100 . . .2

Let’s begin by flipping the coin once, and then think about what makes the most
sense. If its Heads, we could say that I win. It should be the case that at least 50% of
the time, I should win, so this makes sense as an initial choice. If its Tails, what should
happen? Should I lose? No, because then I win with probability 50%. Should I win? No,
because then I win with probability 100%. The only option which makes sense is for the
game to continue.

Let’s repeat this reasoning for the second coin. If its Heads, we could say that I win.
My winning probability is already 50% from the first coin, and this would add another
25% to that total, which is okay because I should win at least 75% of the time. If its
Tails, the same reasoning indicates the game should continue.

Now, the third coin. If its Heads, I should lose. This is because a win would add
1/8 = 12.5% to my winning probability, which is too much, since α < 0.875. If its Tails,
I should continue.

We begin to see the pattern. Reading off the binary expansion of α tells us how to
build our game! The ith digit corresponds to the ith coin. If this digit is 0, Heads should
mean I lose. If this digit is 1, Heads should mean I win. In all cases, Tails continues me
to the next coin.

Given an arbitrary α’s binary expansion

α = 0.b1b2b3 . . .2

Our game can be summarized in the following way: repeatedly toss the coin until it
comes up Heads. Suppose it comes up Heads on the ith coin. Then if bi = 0, I lose, and
if bi = 1, I win. The probability I win on the ith coin is simply bi/2

i for all i, and so the
probability I win on any coin is

∞∑
i=1

bi
2i

but indeed this is precisely equal to α! Further, our game always ends, because
the coin must always land on Heads at some point. More precisely, we could say the
probability of the game taking N flips is

(
1
2

)N . As N → ∞,
(
1
2

)N → 0. Thus the
probability of the game continuing forever is 0, and so it must always end and decide a
winner. With this strategy, we have conquered the tsunami, and solved the problem!

Let’s take a look back at how our “infinite instructions” insight was implemented
in this problem. Although it may seem our final game structure can be implemented in
finite instructions (indeed, I explained it to you in finite instructions!), we need all binary
digits of the irrational α to fully describe it. Thus indeed the game description requires
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an infinite amount of information, and this allows us to cross the bridge from countably
many games to uncountably many games. Further, note this final game structure works
for all values of α, not just irrational ones. We can ditch our basic games, and our looping
games, and just stick with this game structure!

3.0.6 Conclusion

Although such a problem may seem esoteric (as many do), the broader insights about the
initial countability of our games and the uncountability of the α’s were noted by Alan
Turing in his birth of theoretical computer science. He noted that all “algorithms” must
be describable in finite instructions (and thus there are countably many), but “prob-
lems” do not have this restriction (and thus there are uncountably many). Through
this observation, he proved that MOST problems we can create are NOT solvable using
any algorithm. Kurt Gödel also used this observation to show that most mathemati-
cal statements cannot be proven. This is because all “proofs” must be finite in length
(and thus there are countably many), but “mathematical questions” do not have this
restriction (and thus there are uncountably many). This was one of the most important
mathematical discoveries of the 20th century – arguably the most important.

With that, we have solved our coin problem, and conquered the tsunami! We now
give many interesting extensions which utilize the power of our final strategy.

4. Extension Solutions

Calm Waves Extension 1

Let x = 1+ 1
1+ 1

1+ 1
...

and note x = 1+ 1
x
. Solving, we obtain x = 1±

√
5

2
. Of course x = 1−

√
5

2

is negative and so that solution is extraneous. Thus, the correct answer is x =
1 +

√
5

2
.

Calm Waves Extension 2

(Solution by Ojas Mishra). If one simply wants to see the “cool trick” associated with
solving this problem, they should not worry about more rigorous concerns. However, if
they want to really understand the formal mathematics, the solution presented skips over
some important considerations. Specifically, what exactly does

√
2 +

√
2 +

√
. . . mean?

What does it mean to compute a mathematical expression which is infinite in length?
We cannot simply add up the terms, because we will never run out of them!

Rigorously, we define the recursive sequence a1 =
√
2, an+1 =

√
2 + an for all n ∈ N. If

such a sequence converges, we let L = limn→∞ an. From there, we define
√
2 +

√
2 +

√
. . .

as being this limit L. This makes conceptual sense, given that if one were to try and
compute

√
2 +

√
2 +

√
. . . (as it seems it should be defined), they may do so by repeatedly
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computing more and more nested square roots. The limit definition of
√
2 +

√
2 +

√
. . .

makes this idea more rigorous.
Thus to show L = 2 we must first prove that the sequence converges, and then prove

that it converges to 2. To establish convergence, we show an < 2 for all n ∈ N, and that
an is an increasing sequence, both of which can be established by induction. From there
we know the sequence converges, and instantiate its limit L. Applying the recurrence, we
know limn→∞ an+1 = limn→∞

√
2 + an =⇒ L =

√
2 + L. Now we are allowed to solve

the problem in the same way as before, eventually obtaining L = 2 as desired.

Rough Waters Extension 1

Connect the centers of the three circles. The common region splits into an equilateral
triangle and three “bananas” from before.

A = T + 3B = T + 3(S − T ) = 3S − 2T

A = 3S − 2T

Solving gives A =
π

2
−

√
3

2
, which constitutes ≈ 22.4% of each circle’s area.

Rough Waters Extension 2

Connect points A,B,C,D as they were originally defined in the problem. Quadrilateral
ABCD is a rhombus with sides of length 1 and a diagonal of length

√
2. Connecting the

diagonals of ABCD (which intersect at right angles), we can use simple geometry to see
that in fact ABCD is a square. Using the vertical diagonal CD to split the overlapping
region in half, we can see each half is simply a 90◦ sector minus half of square ABCD.
Thus the overlapping region has area

A = 2

(
π

4
− 1

2

)

A =
π

2
− 1

which comprises ≈ 18.2% of each circle’s area.

Tsunami Extension 1

Let q = max(p, 1 − p) > 1
2
. Call the side which flips with probability q “Tails” and the

side which flips with probability 1 − q “Heads”. Running the same game as before, we
will flip the coin until it lands Heads, and decide the winner based on the number of flips
we’ve performed in total. The probability of winning given the game takes i + 1 flips is
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(1 − q)qici (i Tail flips with probability q, and then a Head flip with probability 1 − q),
where ci ∈ {0, 1} and is up to us to choose. Thus we want to choose c0, c1, . . . such that

α = (1− q)
∞∑
i=0

ciq
i

where c0, c1, . . . must all be 0 or 1. Give a procedure for doing so. To prove your
procedure satisfies the above equation, let

αn = (1− q)
n∑

i=0

ciq
i

and show α = limn→∞ αn. The coefficients c0, c1, . . . encode the game’s instructions
in the same way as before. Specifically, flip the coin until it lands Heads. If it lands
Heads on the (i+ 1)’st flip, I win if ci = 1, and I lose if ci = 0.

Tsunami Extension 2

Split everyone into two groups, where the probability of a group winning is the sum of the
probabilities of its members. Play the standard two-person game with your coin. Repeat
this splitting process on the winning group until only one person remains. The fairness
of the coin is not relevant for this general multi-person framework.

Tsunami Extension 3

The expected number of flips is

E =
∞∑
i=0

i

2i

This can be computed by letting

f(x) =
∞∑
i=0

xi =
1

1− x

Differentiating we obtain

f ′(x) =
∞∑
i=0

ixi−1 =
1

(1− x)2

Multiplying by x gives

xf ′(x) =
∞∑
i=0

ixi =
x

(1− x)2

Plugging in x = 1
2
, we have
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E =
∞∑
i=0

i

2i
=

1/2

(1− 1/2)2

E = 2

which makes intuitive sense since given that because the coin has probability 1/2 of
terminating on any given flip, we expect the game to terminate in 1

1/2
= 2 flips. For an

unbalanced coin with probability q = max(p, 1−p) > 1
2

of flipping one side, the expected
number of flips is given by

Eq =
1

1− q

which lines up with our intuitive reasoning from before (because we terminate with
probability 1 − q on any given flip). The multi-person game also takes very short time,
because it cuts the pool of potential winners in half every iteration. Specifically we expect
the multi-person game to take

EN
q =

⌈log2N⌉
1− q

flips. Even for large N , this is remarkably fast. For example, given a multi-person
game with a fair coin (q = 1/2) involving all people on Earth (N ≈ 8 billion), we expect
to be able to decide a winner in approximately 66 flips. Given a multi-person game with
a fair coin (q = 1/2) involving all atoms in the Universe (N ≈ 1080 atoms), we expect to
be able to decide a winner in approximately 532 flips. You could assign every atom in
this Universe some probability of winning, take a standard coin off the street, and pick a
winning atom according to these probabilities in on average 532 flips.

cb © 2024 Arndt and Pham. This open access article is distributed under a Creative Commons Attribution 4.0
International License. This journal is published by the University Library System of the University of Pittsburgh.
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