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1. Introduction

This paper will detail my experience solving a problem I stumbled upon while tutor-
ing math and statistics at Cape Fear Community College in Wilmington, North Car-
olina. Though at first glance the problem seemed simple, I soon realized that the solu-
tion would require knowledge about the Riemann zeta function, which is a common
fascination for math enthusiasts like myself. To follow the arguments in this paper, all
that is necessary is some elementary knowledge about probability and Calculus II. As
the first mathematical project I’ve ever worked on, I learned a lot about math research
through this. Hopefully, readers at the beginning of their research career will as well.

2. Finding the Problem

While tutoring probability and statistics at my old community college, a student once
asked me: "if something happens infinitely often, why doesn’t it have probability 1?".
One reasonable response is to point out that there are an infinite number of even
numbers, but the probability of an arbitrary integer1 being even is 1

2 . Though this
response satisfied my student, this is a fairly boring probability distribution. All it
does is assign a probability of 1

2 for an integer to be in the set of even numbers, and
1
2 for an integer to be in the set of odd numbers. So, I was curious to see if I could
expand this distribution to be more than a simple coin flip.

We will now go over the expansion process. To begin, we start with the set of
positive integers divisible by 2, i.e., {2,4,6,8,10, . . . } and as in the simple distribution,
assign the probability of an integer being in this set to be 1

2 . Next, we move to the set of
positive integers divisible by 3, i.e., {3,6,9,12,15, . . . }. However, there is an overlap be-
tween the set of positive integers divisible by 2 and the set of positive integers divisible
by 3. So, to avoid over-counting, let’s remove the overlap, leaving {3,9,15,21,27, . . . }.
Since 1

3 of all numbers are divisible by 3, and we removed half of all those numbers,

1The phrase "arbitrary integer" is hand-waving away some measure theory. Indeed, when you spec-
ify a probability distribution, you are implicitly defining what an "arbitrary integer" is. In the way
that we count, it is intuitive to think about the probability of an arbitrary integer being even as 1

2 ,
since every other integer is even. However, if we arrange the natural numbers in the following way:
{1,3,2,5,7,4, . . . }, then it appears that the probability of selecting an even number is 1

3 .
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we will assign the probability of an integer being in this set to be 1
3

1
2 = 1

6 . Since all the
numbers divisible by 4 are also divisible by 2, we will move straight to the set of num-
bers divisible by 5: {5,10,15,20,25, . . . }. Again, we will remove the elements that are
also in one of the previous two sets, leaving {5,25,35,55,65, . . . }. Since 1

5 of all num-
bers are divisible by 5, with 1

2 of those numbers divisible by 2 and 1
3 of those numbers

divisible by 3, we will assign the probability 1
5

2
3

1
2 = 1

15 for an integer to belong to this
set. We continue this process of assigning probabilities for each positive integer.

First, note that this procedure will only assign positive probability to the sets start-
ing with a prime number. Second, observe that the probability of being in the set
starting with 2 is exactly the probability that an arbitrary integer is divisible by 2. For
the set starting with 3, the probability is exactly the probability of being divisible by
3, but not divisible by 2. For the set starting with 5, it is exactly the probability of
being divisible by 5, but not divisible by 2 or 3. Then if we let pi represent the ith
prime number, this probability distribution represents the probability that for some
arbitrary integer, pi is its smallest prime factor. Thus, this probability can be explicitly
written via the following function:

f (pi) =
1
pi

i−1∏
k=1

(
1− 1

pk

)
Where

∏
is the product symbol for sequences, i.e.,

∏n
k=1 ak = a1a2 . . . an, along with

the notation that
∏0
k=1 ak = 1. Then f (pi) would be a probability mass function (or

PMF). That is, the function that assigns a specific positive probability to the event that
pi is the smallest prime factor for an arbitrary integer. However, is this actually a valid
probability mass function? By construction, it seems reasonable that it is, but for this
to be a valid PMF, f (pi) has to sum to 1 over all i. That is:

∞∑
i=1

1
pi

i−1∏
k=1

(
1− 1

pk

)
= 1

This is not an obvious result: does the above expression actually sum to 1? This
paper will detail my pursuit in answering this question definitively.

3. Solving the Problem

My first attempts to solve this problem using some basic Calculus II knowledge failed
quite quickly without giving much insight. So, before continuing to try to prove that∑∞
i=1 f (pi) = 1, I began gathering evidence about this series to see if it was even feasible

for me to solve this problem. After my initial excitement started to fade, I found
myself staring at a very complicated infinite series. I needed to convince myself that
this series actually does converge to 1 before I could commit to trying to prove it.
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3.1. Empirical Evidence

The first step of learning about this series was to simply calculate it up to some ar-
bitrarily high index. I chose to go up to the 50 millionth prime since my old laptop
would not let me go to anything higher. The results of this calculation can be seen in
table 1.

Though 50 million seemed like a reasonable number of primes to sum over, I still
needed to be careful about efficiently doing the computation, since there is also a
significant amount of multiplication happening with each term. To remedy this, I
noticed the following relationship:

f (pi) =
1
pi

i−1∏
k=1

(
1− 1

pk

)

f (pi+1) =
1
pi+1

i∏
k=1

(
1− 1

pk

)

=
1− 1

pi

pi+1

i−1∏
k=1

(
1− 1

pk

)
=
pi − 1
pi+1

f (pi)

This fact was very useful in making the calculations in Table 1 computable in a
manageable amount of time.

n pn f (pn)
∑n
i=1 f (pi)

1 2 0.5 0.5
2 3 0.16667 0.66667
3 5 0.06667 0.73333
4 7 0.03810 0.77143
5 11 0.02078 0.79221
6 13 0.01598 0.80819
...

...
...

...
50,000,000 982,451,653 2.76 ∗ 10−11 0.97288

Table 1: Results for the nth partial sum of the function f (pi) = 1
pi

∏i−1
k=1(1− 1

pk
).

From Table 1, this sum does look like it could be converging to 1. We can also
see that the rate of increase slows down quickly, with more than 80% of the mass
occurring on the first 6 values. From this, I became more confident in my hypothesis
that

∑∞
i=1 f (pi) = 1. However, there are plenty of series that appear to converge before

eventually diverging to infinity, such as the harmonic series. So, I needed to learn
more about the mathematical structure of this series.
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3.2. Mathematical Evidence

Let us ignore the prime number aspect of this series for a moment and inspect the
properties of

∑∞
i=1

1
ai

∏i−1
k=1(1 − 1

ak
) for some sequence {ai}∞i=1. For which sequences will

this series converge to 1? If we let ai = r for all i, the series reduces to the following:

∞∑
i=1

1
r

i−1∏
k=1

(
1− 1

r

)
=
∞∑
i=1

1
r

(
1− 1

r

)i−1

=
1
r

∞∑
i=1

(
1− 1

r

)i−1

This is a geometric series!2 Thus, if |1 − 1
r | < 1, we have the following promising

result:

∞∑
i=1

1
r

i−1∏
k=1

(
1− 1

r

)
=

1
r

1

1− (1− 1
r )

=
r
r

= 1

Continuing this line of investigation, if we let ai = i +N for some integer N ≥ 1,
then we have:

∞∑
i=1

1
i +N

i−1∏
k=1

(
1− 1

k +N

)
=
∞∑
i=1

1
i +N

i−1∏
k=1

(
k +N − 1
k +N

)

=
∞∑
i=1

1
i +N

N (1 +N )(2 +N ) . . . (i +N − 2)
(1 +N )(2 +N ) . . . (i +N − 1)

=
∞∑
i=1

N
(i +N )(i +N − 1)

=
∞∑
i=1

N
i +N − 1

− N
i +N

This is a telescoping series! Looking at the partial sums of this series, we have:

n∑
i=1

N
i +N − 1

− N
i +N

=
(
1− N

1 +N

)
+
( N
1 +N

− N
2 +N

)
+ · · ·+

( N
n+N − 1

− N
n+N

)

= 1− N
n+N

Sending n→∞, the partial sums converge to 1. Thus,
∑∞
i=1

1
i+N

∏i−1
k=1(1 − 1

k+N ) = 1
for all N ≥ 1.

From these two examples, I was equipped with the insights necessary to solve this

2In fact, if we set ai = 1
p where p ∈ (0,1), then we get the function 1

ai

∏i−1
k=1(1− 1

ak
) = p(1− p)i−1 which

is exactly the probability mass function for the geometric distribution.
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problem. Specifically, the last example reducing to a telescoping series was pivotal to
the proof that is about to follow.

3.3. The Proof

Before I present the proof, I need to introduce a few facts about the Riemann zeta
function. Let ζ(s) =

∑∞
n=1

1
ns with s being some real number. This function plays an

important role in one of the biggest open questions in mathematics: the Riemann
Hypothesis. To learn more about the Riemann Hypothesis and why it is so important,
see [1]. Now, when s > 1, it can be shown that ζ(s) converges to a finite number via the
integral test. Conversely, if s ≤ 1, then ζ(s) will diverge to positive infinity. Finally, we
have its relationship to the prime numbers. Specifically, Euler’s product formula for
the Riemann zeta function ζ(s) =

∏∞
k=1(1− 1

psk
)−1. This relationship between the primes

and the zeta function can be see through the following argument:

ζ(s) = 1 +
1
2s

+
1
3s

+
1
4s

+ . . .

1
2s
ζ(s) =

1
2s

+
1
4s

+
1
6s

+
1
8s

+ . . .

If we subtract these two equations, it will remove all fractions whose denominator
is divisible by 2 from the right side, leaving:(

1− 1
2s

)
ζ(s) = 1 +

1
3s

+
1
5s

+
1
7s

+ . . .

1
3s

(
1− 1

2s

)
ζ(s) =

1
3s

+
1
9s

+
1

15s
+

1
21s

+ . . .

Again, subtract these two expressions to yield:(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 +

1
5s

+
1
7s

+
1

11s
+ . . .

Which removes all the remaining fractions on the right side with denominators
divisible by 3. Thus, since every integer greater than 1 is divisible by a prime number,
if we repeat this process for every prime we will have:

. . .
(
1− 1

7s

)(
1− 1

5s

)(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1

ζ(s) =
1

(1− 1
2s )(1−

1
3s )(1−

1
5s )(1−

1
7s ) . . .

ζ(s) =
∞∏
k=1

(
1− 1

psk

)−1

or
1
ζ(s)

=
∞∏
k=1

(
1− 1

psk

)
With these facts established, we can move to a complete proof that f (pi) is a valid

probability mass function.
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Theorem 1. The function f (pi) = 1
pi

∏i−1
k=1(1− 1

pk
) is a probability mass function on the set

of prime numbers.

Proof. For f (pi) to be a probability mass function, the following criteria must be met:
(1) f (pi) ≥ 0 for all pi , and (2)

∑∞
i=1 f (pi) = 1.

The first criterion is automatically satisfied, since all the prime numbers are posi-
tive integers greater than 1. For the second criterion, note that we can rewrite f (pi) as
follows:

f (pi) =
1
pi

i−1∏
k=1

(
1− 1

pk

)

=
(
1− 1 +

1
pi

) i−1∏
k=1

(
1− 1

pk

)

=
(
1−

(
1− 1

pi

)) i−1∏
k=1

(
1− 1

pk

)

=
i−1∏
k=1

(
1− 1

pk

)
−
(
1− 1

pi

) i−1∏
k=1

(
1− 1

pk

)

=
i−1∏
k=1

(
1− 1

pk

)
−

i∏
k=1

(
1− 1

pk

)
With this new telescoping representation of f (pi), observe the partial sums:

n∑
i=1

f (pi) =

 0∏
k=1

(
1− 1

pk

)
−

1∏
k=1

(
1− 1

pk

)+ · · ·+

n−1∏
k=1

(
1− 1

pk

)
−

n∏
k=1

(
1− 1

pk

)
=

0∏
k=1

(
1− 1

pk

)
−

n∏
k=1

(
1− 1

pk

)

= 1−
n∏
k=1

(
1− 1

pk

)
As noted previously,

∏∞
k=1(1 − 1

psk
) = 1

ζ(s) , thus,
∏∞
k=1(1 − 1

pk
) = 1

ζ(1) = 0. Therefore,
since the partial sums converge to 1,

∑∞
i=1 f (pi) = 1.

And there we have it! Our desired result has thus been proven. In fact, a similar
proof technique can be used to prove the following more general theorem:

Theorem 2. If ai > 1 for all i, and
∏∞
k=1(1 − 1

ak
) = c, then f (ai) = 1

1−c
1
ai

∏i−1
k=1(1 − 1

ak
) is a

probability mass function over the set of positive integers.
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Though I will leave it as an exercise to the reader to prove.

4. Further Details

This probability distribution is interesting, but what can we do with it? If we observed
data that was generated from this distribution, what kind of analysis can we perform?
As statisticians, we often care about parametric families and the moments of those fam-
ilies. Once these two things are specified, there is a vast literature on how to perform
statistical analysis, though much too extensive for me to introduce here. Instead, I will
simply give brief motivations to their value and do some calculations for our recently
defined probability distribution.

4.1. Parameterizing the Distribution

A parametric family is a probability distribution that is specified by a typically un-
known parameter of interest. An example of this would be the distribution for a coin
flip, also known the Bernoulli distribution. If you flip a coin, it will come up heads
with some probability, call it p, and will come up tails with probability 1− p. p in this
case is the parameter of interest and can be any value between 0 and 1. If you want to
check to see if you have a fair coin, you’ll need to estimate the value of p, presumably
based on data collected from said coin.

Of course, the Bernoulli distribution is a very simple probability distribution, but
parameters show up everywhere. Take the normal distribution, which is ubiquitous in
statistics. A normal distribution can be parameterized by its mean, often denoted as µ,
and its standard deviation, often denoted by σ , both of which are of high importance
to practicing scientists.

Now, going back to the probability distribution discussed in this paper, using The-
orem 2, we can define a parametric family with the following probability mass func-
tion:

h(pi) =
1

1− 1
ζ(s)

1
psi

i−1∏
k=1

(
1− 1

psk

)
For some unknown s > 0. Note that when s = 1, this function reduces to the prob-

ability mass function defined by Theorem 1. Of course, we could have defined a dif-
ferent parametric family, but defining it this way establishes a clearer relationship
between this distribution and the Riemann zeta function.

4.2. Moments

To discuss the moments of a probability distribution, we first need to define the ex-
pectation of a random variable. For a random variable X that can take on values
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{x1,x2, . . . , } and has PMF h(x), the the expectation of X is given by:

E(X) =
∞∑
i=1

h(xi)xi

Where E(X) is the expectation of X. Note that E(X) need not be finite. From this,
we have that the nth moment of X is given by:

E(Xn) =
∞∑
i=1

h(xi)x
n
i

Moments are very useful at characterizing a probability distribution. the first mo-
ment gives us the mean, while the second moment gives us information about the
variance, since we have the relationship V (X) = E(X2)−E(X)2, where V (X) is the vari-
ance of X.

Now, let X be a random variable that can take on values {p1,p2, . . . } with the PMF
h(pi) defined in the previous section for some s > 0. Then the nth moment of X is given
by:

E(Xn) =
1

1− 1
ζ(s)

∞∑
i=1

1
ps−ni

i−1∏
k=1

(
1− 1

psk

)
Calculating the exact value of this series does not seem like an easy task. However,

can we determine when the moments are finite?
Before I attempt to answer this question, let us first state a few facts about the

prime zeta function, which I will denote as ψ(s) =
∑∞
i=1

1
psi

. Just as for the Riemann
zeta function, ψ(s) converges if and only if s > 1. The proof of this fact goes beyond
the purposes of this paper, but for more details, see here [2]. Now, let’s break down
this expectation into 3 cases: (1) when s > 1, (2) when s = 1, and (3) when s < 1. Under
case (1), since 1

ζ(s) ≤
∏i−1
k=1(1− 1

psk
) ≤ 1 for all i, we have:

1
ζ(s)− 1

ψ(s −n) ≤ 1

1− 1
ζ(s)

∞∑
i=1

1
ps−ni

i−1∏
k=1

(
1− 1

psk

)
≤ 1

1− 1
ζ(s)

ψ(s −n)

Thus, E(Xn) is finite if and only if s − n > 1, since ψ(s − n) is finite if and only if
s −n > 1.

For cases (2) and (3), more involved arguments will be necessary, so for the sake
of clarity, we will only discuss some ideas for these cases. Note that as s decreases,
1
psi

approaches 0 more slowly, while
∏i−1
k=1(1 − 1

psk
) approaches 0 more rapidly. Thus,

to understand the convergence of E(Xn), we must first understand the growth rate
of both of these terms. We already have an understanding of 1

psi
via the prime zeta

function. For
∏i−1
k=1(1− 1

psk
), note the following:
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i−1∏
k=1

(
1− 1

psk

)
= exp

 i−1∑
k=1

log
(
1− 1

psk

)
To simplify further, we need to bound the term log(1 − 1

psk
). To do this, note the

following relationship for logarithms:

x
1 + x

≤ log(1 + x) ≤ x

When x > −1. There are many ways to demonstrate this, but the simplest is to
graph these three functions. Once this bound is established, we immediately have:

− 1
psk − 1

≤ log
(
1− 1

psk

)
≤ − 1

psk

Applying this to our product term then yields:

exp

− i−1∑
k=1

1
psi − 1

 ≤ i−1∏
k=1

(
1− 1

psk

)
≤ exp

− i−1∑
k=1

1
psi


Hence, to understand when

∑∞
i=1

∏i−1
k=1(1− 1

psk
) converges, it is enough to understand:

∞∑
i=1

exp

− i−1∑
k=1

1
psk


When s > 1, the above series will definitely diverge, since exp(−

∏∞
k=1

1
psk

) = exp(−ψ(s))

which is just some positive number. When s = 1, note that
∑n
i=1

1
pi
≤

∑pn
i=1

1
i = Hpn

where Hn is known as the nth harmonic number. There is much literature on har-
monic numbers, including the following bounds:

log(n) ≤Hn ≤ log(n) + 1

For more details on harmonic numbers, see [3]. Putting these two bounds together,
we have:

∞∑
i=1

exp

− i−1∑
k=1

1
pk

 ≥ ∞∑
i=1

exp(−Hpi−1
) ≥

∞∑
i=1

exp(−log(pi−1)− 1)

≥
∞∑
i=1

exp(−1)
1
pi−1

=∞

The above argument also provides a proof that E(X) =∞ when s = 1. When s < 1,
my hunch is that

∑∞
i=1 exp(−

∑i−1
k=1

1
psk

) will converge, but unfortunately I don’t have an
argument for this at the time of writing.

Now that we have some idea as to when the moments of X exist, we can get approx-
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imations for them using the same approach as in section 3.1. That is, using a computer
to calculate the partial sum up to some arbitrarily high index.

5. Conclusion

In this paper, we proved the validity of a novel probability distribution over the prime
numbers. In doing so, we also provided a way to define probability distributions over
more general sequences {ai}∞i=1. In chronicling my process to arrive at these results,
I hope to have provided useful insights to those at the start of their mathematical
research careers.
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