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Stirring Coffee
A Real-Life Application of Topology in Analysis

Armin Schikorra

(Communicated by Leonardo Finzi and Lark Song)

Have you ever pondered, after gently swirling a spoon through your steaming cup
of coffee, whether, despite your meticulous stirring efforts, a solitary coffee molecule
might have ended up exactly at the position where it was before stirring? Legend has
it that Dutch mathematician Luitzen Egbertus Jan Brouwer (1881–1966) engaged in
precisely such an experiment, ultimately establishing what is now celebrated as the
Brouwer Fixed Point theorem – a beautiful result combining Topology with Analysis.

Let us describe the actual statement of the theorem we are going to discuss below.
Take any continuous map F from the unit disk D to the unit disk D. For example, the
position of each coffee-molecule p⃗ ∈ D, before steering, gets mapped into the position
F(p⃗) ∈ D after steering – where D denotes the coffee-mug. The theorem states that
there must be at least one point q⃗ that has not changed at all: F(q⃗) = q⃗ – i.e. one
molecule of coffee has not moved.

1. Topology: Winding Number

We start by introducing our main tool, which is the winding number. For this, take a
continuous map from a circle into a circle. Essentially, the circle represents the bound-
ary of our (for simplicity: 2-dimensional) coffee mug. In order to distinguish between
the domain (circle before stirring) and the target (after stirring), we will denote them
by S1 and S2 respectively, where S stands for sphere. A map f from S1 to S2 (denoted
as f : S1→ S2) is simply any rule that to each point θ in S1 assigns some point f (θ) in
S2. See Figure 1

Continuous means that if we change a little bit the points in the domain, say I
wiggle θ into a ζ which is very close to θ, then f (ζ) is not too far away from f (θ).
Equivalent, but more geometrically intuitive: I can draw the curve defined by f (i.e.
draw the corresponding values of f (θ) as θ traverses the circle) without ever having
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Figure 1: A continuous map f from S1 (left) to S2 (right) can be drawn as a curve on
S2. To better visualize the behavior of curve f we visually “fatten” S2. Observe the
orientation: when we walk around θ ∈ S1 clockwise, we have a direction of the curve
in S2. This is indicated by the arrow signs. Observe that we don’t really need to draw
the left circle S1 to understand what f does, so in later pictures we won’t draw S1.

Figure 2: Winding numbers (from left to right): 1, 2, 0

to lift the pen. Since S1 is a circle, it has no start point and no end point. If I draw all
the values f (θ) for all θ in S1 then the picture I obtain is that of a curve inside of S2.
Maybe like a rubber band somehow fiddled onto S2.

Let us assume we draw this rubber band clockwise (this fixes the orientation of S1).
Then we find a picture of an oriented rubber band on S2. It is important to identify
each of the strands of the rubber band, so in or images we draw the rubber band on a
“fattened” image of S2 – purely for visibility reasons.

We now define the winding number of the map f , we call it w(f ). Assume you
stand on the top of the circle S2. The rubber band is passing through the point you are
standing on never, once, or several times. You count how many times the rubber band
passes through your position, but if it passes clockwise, you count +1. And every time
the rubber bands passes through your position counterclockwise you count it as −1.
Summing these numbers up you get the winding number w(f ).

See the Figures 2 for examples. Indeed, try and draw yourself some more pictures.

Exercise 1. Draw curves with winding number 0,+1,−1,+2,−2, . . .. Try to find many dif-
ferent looking curves that have winding number 2. What do all the curves that have winding
number 2 have in common?

There are two pathological situations that you might have encountered when try-
ing the above exercise: if the rubber band never passes through you, the winding
number is simply zero. If a strand of the rubber band does not pass through you, but
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Figure 3: The map f (θ) = θ has winding number 1 (left). Any constant map has
winding number 0 (right).

Figure 4: The winding number is the same wherever Ada is.

it just touches you, we count that as a +0 (or rather a +1 and a −1, which is effectively
a +0.)1

With the notion of winding number at hand let us look at two important examples:

Example 2. Assume the map f is simply f (θ) = θ. That is, each point on S1 gets
mapped to its exact corresponding point on S2. Then the corresponding rubber band
goes around the circle S2, in clockwise direction, exactly once. So the winding number
of this particular configuration is w(f ) = 1. See Figure 3.

Example 3. Fix any vector ζ ∈ S. Denote h(θ) = ζ. That is the rubber band is not
going around S1 at all, it is collapsed onto a single point. Then the winding number is
w(h) = 0. See Figure 3.

It is also good to know the following, although it will not be used here:

Exercise 4. Justify that in our definition of winding number, it does not matter where
exactly the person is standing. That is, changing the position of the person does not change
the winding number. See Figure 4.

Now the most important property: the winding number does not change under
continuous changes of the curve. Continuous changes are called homotopies. If we can

1Another subtlety I don’t really want to discuss in detail here: who says the rubber band passes
through our position only finitely may times? Indeed it could pass infinitely many times! But if that
happens then all but finitely many times the rubber band comes back again in the opposite direction –
so these infinitely many times cancel out. Indeed, for any continuous map f the winding number is a
finite number.
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Figure 5: Theorem 5: If we can transform two curves continuously into each other,
without rupture and without leaving S2, then the winding number must be the same.
Fun fact: The converse is also true!

continuously transform the rubber band that f forms into a rubber band that g forms
(without rupture and without leaving S2), we say that f and g are homotopic to each
other.

Exercise 5. Convince yourself that if we continuously can transform a rubber band f into
another rubber band g, so that during that transformation the rubber band always stays
inside S2, then the winding number does not change.

Let us reformulate this last observation in more analytic terms, which will be use-
ful later.

Corollary 6. Assume f : S1 → S2 and g : S1 → S2 are continuous maps and there exists
another continuous map, called a homotopy,

H(t,θ) ∈ S2 for 0 ≤ t ≤ 1 and the circular variable θ ∈ S1

such that:

• H(0,θ) = f (θ) for all θ ∈ S1, and

• H(1,θ) = g(θ) for all θ ∈ S1.

Then, the winding number of f and the winding number of g are the same.

This is indeed a restatement of Theorem 5. For fixed “time” t ∈ [0,1] one can treat
the function H(t, ·) : S1 → S2 as describing a curve. When changing t, this curve con-
tinuously changes, so we see that the map H describes how we continuously transform
the curve of f (at time t = 0) to the curve of g (at time t = 1).

2. Analysis: Brouwer Fixed Point Theorem

First, some definitions: for a vector p⃗ = (x,y) ∈ R2 we denote its length by |p⃗| :=√
x2 + y2. The closed unit disk is denoted by

D := {all vectors p⃗ = (x,y) ∈ R2 : such that |p⃗| ≤ 1}.
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The boundary of the unit disk D is the circle, denoted by

S = {all vectors θ = (x,y) ∈ R2 : such that |θ| = 1}.

We will also denote the origin as 0⃗ = (0,0). Now we are ready to formulate the precise
statement of the Brouwer fixed point theorem.

Theorem 7. Take any continuous map F from D into D. There exists at least one point
p⃗ ∈ D such that F(p⃗) = p⃗. Such a point p⃗ is called a fixed point of F.

If we think about our cup of coffee example from the beginning, then we may
assume, for simplicity, that the mug is two-dimensional and moreover in the shape of
a disk D – e.g. by looking on it from above like in the picture at the beginning. Then
we could think of F : D→ D as the map that describes the position of a drop of coffee
that originally is at the position p⃗ ∈ D and, after stirring, ends up at the position F(p⃗).
Of course that position is still inside the mug D (no spills!). The Brouwer Fixed Point
theorem says that one drop p⃗ has not changed position.

Proof of Theorem 7. The logical strategy is to show that if we assume the claimed state-
ment was false, then we find a logical contradiction – so the statement must have been
true! The main observation to obtain this contradiction is: If the statement of the the-
orem was false, then we can divide by quantities like |F(p⃗)− p⃗| , 0 for all p⃗ ∈ D; And we
can use this to continuously transform the rubber band from Example 2 to the rubber
band from Example 3 without rupture – contradicting Theorem 6.

So assume the claim of our theorem is false. That is, we assume there is no fixed
point. In other words we assume |F(p⃗)− p⃗| , 0 for all p⃗ ∈ D. We will reach a contradic-
tion by inspecting the winding number of the map g : S1→ S2 given by g(θ) := F(θ)−θ

|F(θ)−θ| .
First, observe that each θ in the circle S1 is also a point in the disk D, so it makes sense
to apply F to it. Second, we are not dividing by zero, which means g is indeed well
defined.

In fact, we will consider three maps:

f (θ) = −θ,

as in Example 2,
w(f )=−1

g(θ) =
F(θ)−θ
|F(θ)−θ|

as above

h(θ) =
F (⃗0)

|F (⃗0)|
.

constant as in Example 3,
w(h)=0

We are going to show that f is homotopic to g, and g is homotopic to h. Thus, by
Theorem 6 the winding numbers of f , g, and h are the same – but the winding num-
ber of f is 1, the winding number of h is 0. This just cannot be true, it is a logical
contradiction. Thus, somewhere along our argument there is a logical mistake. Since
every step was a logical deduction, we conclude that it is the assumption “there is no
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fixed point” which must be false. But if it is not true that there is no fixed point, then
logically there must be at least one fixed point. And that is what we wanted to prove!

In conclusion, we are done once we show that f , g, and h are homotopic: see below.

Proof that f and g are homotopic. Consider the homotopy

H(t,θ) :=
tF(θ)−θ
|tF(θ)−θ|

, θ ∈ S1, 0 ≤ t ≤ 1.

For each t and each θ ∈ S1 this is a well-defined and continuous map with values in
S2 because we never divide by zero: |tF(θ)−θ| , 0 for any θ ∈ D and t ∈ [0,1]. Indeed,
for t = 1 this is a consequence of our assumption F(θ) , θ, whereas for t < 1 the point
tF(θ) lies strictly inside the circle (note that |F(θ)| ≤ 1), which in particular means that
tF(θ) , θ.

Moreover, H(0,θ) = f (θ) (recall that |θ| = 1) and H(1,θ) = g(θ). Thus, we see that
H(t,θ) is a homotopy in the sense of Theorem 6.

Proof that g and h are homotopic. This time we set

H(θ,t) :=
F(tθ)− tθ
|F(tθ)− tθ|

, θ ∈ S1, 0 ≤ t ≤ 1.

Then we see
• H is well-defined because we never divide by zero
• H(θ,1) = g(θ)
• H(θ,0) = h(θ)

Thus H is a continuous transformation of the rubber bands of g and h.

3. Concluding remarks

We restricted our attention to the two-dimensional disk D because its boundary is the
one-dimensional circle – and the winding number is relatively easy to define on the
circle. The same argument works in dimensions 3 and higher – but one needs to re-
place the winding number by the mapping degree. Actually, there are even versions
of the Brouwer Fixed Point theorem in infinite dimensions. The theory of mapping
degree, and more generally homotopy groups, are the fundamental topics of a mathe-
matical discipline called Algebraic Topology.

Let us also remark that one major property of the Brouwer fixed point theorem:
We have absolutely no idea where the fixed point is, the proof is not constructive at all
and gives us no hint on how to find this fixed point. We just know it exists. Also, the
fixed point might not be unique, there might be many fixed points. Lastly, as a final
exercise, I invite the reader to think about how to prove this result in one dimension.
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