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Abstract

The category of graphs and the mappings between them is considered. The
monomorphisms and epimorphisms are characterized. Reflective and coreflective
subcategories are identified and terminal, initial, projective, and injective objects
are characterized. Parallels with the category of topological spaces are discussed.

1. Introduction.

A graph G is an ordered pair G = (V,E) where V is a non-empty set of elements called
vertices and E is a set, possibly empty, of pairs of distinct elements of V, called edges.
An edge {v,w}, usually written simply vw, is said to be incident on the vertices v and
w. We assume that there is at most one edge incident on any pair of vertices.

A graph H is a subgraph of a graph G if every vertex and every edge of H is also a
vertex or edge of G.

A graph morphism f from G to G’ is a pair of morphisms in the category S of sets
fv: V>V’ and fg: E — E’ such that fp preserves incidence, i.e., fg({u,v}) is the
edge {fy(u), fy(v)} in G’. A morphism i is said to be an isomorphism if iy, and ip are
both one-to-one and onto.

The category G of graphs includes graphs as its objects and graph morphisms as its
morphisms. G is a concrete category since it has a forgetful functor to the category S
of sets and mappings.

One goal of category theory is to draw parallels between areas of mathematics.
Here we examine the parallels between reflective and coreflective subcategories of G
and such categories in the category of topological spaces.

The details from topology can be found in [3], and a shorter account is in [4].

2. Morphisms in G.

In any category a monomorphism is a morphism m : B — C such that if f and g are
morphisms from A to B such that mo f =mog then f =g.

OThe author received partial support from the Qatar Foundation for Education, Science and Com-
munity Development.
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The dual is an epimorphism. A morphism e: A — B is an epimorphism if for mor-
phisms f and g from B to C the equality f oe = goe implies that f =g.
In diagrams a monomorphism is indicated by an arrow with a tail, while an epi-

morphism is indicated by an arrow with two heads as below:

m

G

Proposition 2.1. The monomorphisms in G are the morphisms where fy, is one-to-one.

Proof. Let my : V(H) — V(]) be one-to-one. We first show that mg is also one-to-one. If
uv and xw are distinct edges, then we can assume that u = x. Then fy(u) = fy(x) so that
{fv(u), fv(@)} = {fv(x), fv (w)}.

Now assume that mo f =mo g in the diagram below:

f
/—\ m
H——

Then for a vertex v of G and vw an edge of G, my(f,(v)) = my(g,(v)) and mg(fp(uw)) =
mg(ge(uw)). Since my and mpg are one-to-one, fy(v) = gy(v) and fp(uw) = gg(uw) so that
f =g and m is a monomorphism.

Conversely, let m be a monomorphism and let v; and v, be distinct verticesin H. Let G be
the trivial graph K; with the single vertex u, and define f and g from K; to H by fy(u) =1,
and gy (u) = v,. Because m is a monomorphism, mo f # mog. Hence, my (v;) # my(v,) so that

my is one-to-one. The fact that mg is one-to-one follows as shown above. [J
Proposition 2.2. The epimorphisms in G are the morphisms where fy, is onto.

Proof. Let e: G — H have ey onto and let f oe =goe in the diagram below:

f
e VRN
G—CS>H I
~

Let v be a vertex in H, and choose u in e\’,l(v). Then fy oey(u) = gy oey(u) so that
fv(v) =gy (v). The equality of fr and g follows from the requirement that fr and gg preserve
incidence. Hence, e is an epimorphism.

For the converse we prove the contrapositive. Let e : G — H and assume that there is a
vertex vy in H which is not in the image of G.

Consider first the case where H has only two vertices vq and v;. Define H’ to be H
with an additional vertex v,. If vy has degree 0, add the edge vyv,, if vy has degree 1 in
H, let v, have degree 0 in H’. Then define f : H - H’ by fy(v{) =v; and fy(vo) = v, and
define g: H — H’ by gy(v1) =v; and gy (vo) = vo. Then the degrees of fi (vy) and gy (vg) are
different, yet goe = f oe, so e cannot be an epimorphism.

Now assume that H has three or more vertices.
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Consider the case where a missed vertex vy has degree 0. Let H” be H with v, replaced
by an isolated v; and a new vertex v, with an edge v,w where w is part of the image of G.
Define f : H — H’ with fy(vy) = v; and the identity otherwise; and ¢g: H — H’ the same
except gy (vg) =v,. Then g# f but goe= f oe, so e cannot be an epimorphism.

Now suppose that the missed vertex v, has degree 1, and let vyw be its edge in H. Define
f +H — H to be the identity and g : H — H be the identity on H other than on vy and vyw
so that fy(vg) = w and the edge disappears. Then goe = f oe, but f # g, so e cannot be an
epimorphism.

Now consider the case where deg(vy) > 2. Let u and w be vertices adjacent to vy. Let
H’ be H with edges added joining the vertices adjacent to v, if such edges do not exist in H.
Define f : H — H’ to be the identity on H except that f(vy) = u, the edge vou is lost, and the
other edges incident on vy go to the correct, perhaps added, edges of H'. Define g: H — H’
similarly except g(vy) = w and the edge vow is lost. Then goe = f oe but f # g, so e cannot
be an epimorphism.

Hence, the epimorphisms in G are the morphisms f for which fy is onto. [

A monomorphism m* is an extremal monomorphism if when m” is factored as below

and e is an epimorphism, then e is an isomorphism. An extremal monomorphism is

indicated in a diagram by an arrow with a double tail.

A subgraph H of a graph G is a called an induced subgraph if for u and v vertices
of H and uv an edge in G, then uv is also an edge in H. Thus an induced subgraph
of G can be defined by choosing the vertices and then requiring that all edges of G
which are incident on a pair of chosen vertices also belong to the subgraph.

Proposition 2.3. The extremal monomorphisms in G are the embeddings of subgraphs in-
duced by a set of vertices.

Proof. We first show that an extremal monomorphism is the embedding of a subgraph induced
by a set of vertices. Let m*: G — H be an extremal monomorphism. Then we can factor m*

through the subgraph H’ induced by m7,(G) in H as diagramed below:

HI
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e is an epimorphism since ey is onto. Hence, e is an isomorphism, and m" is the embed-
ding of an induced subgraph.
Now let m" be the embedding into G of the subgraph H induced by the set S of vertices

of G, and let m* = hoe where e is an epimorphism:

H % G

Let vy, v, be distinct vertices in H, and suppose that e(vy) = e(vy). Then hy oey(vy) =
hy oey(vy) which is impossible because m* = hoe and m"* is an embedding, hence, one-to-one.
Thus, ey is one-to-one, and eg is also one-to-one since it preserves incidence.

Now suppose that uv is an edge in I not in the image of eg. Then {hg(u), hg(v)} is an
edge in G incident on vertices in the image of H. But H is an induced subgraph, so the
corresponding edge is present in H, and hence in the image of ¢ in I. Thus, ey is also onto,

and e is an isomorphism. Hence, m* is an extremal monomorphism. [J]

If m*: G — H is an extremal monomorphism, then G is said to be an extremal
subobject of H. So in G, the extremal subobjects are subgraphs induced by a set of

vertices.
Example 2.4. A monomorphism that is not an extremal monomorphism.

Consider the three graphs below:

b c f 4 ] k

Gy G, G3
Define m:G3 > G, by jo f,ir>e, I h k> g define e: G3 > G; by j— b,
i ald ki c and define f: Gy > G, by b f,ar e,d — h,c+— g The
definitions of m, e, and f on edges are determined by preservation of incidence.
Then m = f oe, m is a monomorphism, and e is an epimorphism since ey is onto,

but m is not an isomorphism. Hence, m is not an extremal monomorphism. m

A morphism e is an extremal epimorphism if it can be factored as e = mo f where m
is a monomorphism, then m is an isomorphism. An extremal epimorphism is denoted

in a diagram by an arrow with a triple head.

Proposition 2.5. The extremal epimorphisms in G are the morphisms e where both ey and

eg are onto.

Proof. Let e: G — H have both ey and ep onto, and let the following diagram commute with
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m a monomorphism:

G - H

Because ey and ep are both onto and the diagram commutes, my and mg must both be
onto. my is also one-to-one since m is a monomorphism. It follows that mp is one-to-one
since it preserves incidence, my is one-to-one, and there is at most one edge incident on a pair
of vertices. Hence, m is an isomorphism, and therefore e is an extremal epimorphism.

Now suppose that e:G —» H is an extremal epimorphism. Let K be the subgraph of H
induced by the vertices in the image {ey(v) : v a vertex of G} and let m be the embedding of K
into H. Define f : G — K by fy(v) = u if ey(v) = u. Then by construction ey = my o fy,. It
follows that ep = mg o fgp by preservation of incidence. Then m is a monomorphism, so by the
assumption that e is an extremal epimorphism, m is an isomorphism, and my and mp are

onto, and thus so also are ey, and eg. [
Example 2.6. An epimorphism that is not an extremal epimorphism.

Consider the three graphs below:
a d 4 i

b e h k
Gy G, Gs
Define e: Gy > Gy byar f,b— f,c— f,d v g, e h, define m: G3 — G, by
ir> g, j f, ki h,and define §: Gy > Gz byarj,b—j,cr—j,d—ie—k.
Then e =mo g and m is a monomorphism but not an isomorphism. ey is onto, so

e is an epimorphism, but er is not onto so e is not an extremal epimorphism. m

A graph is said to be complete if its set of edges includes all possible pairs of ver-
tices. A sequence of vertices vy, vy,vy,...,v, together with edges vovy,vivy,...,v,_ 17,
incident on consecutive pairs of vertices in the sequence is called a path connecting v
and v,. A graph G is connected if there is a path in G connecting any pair of vertices
in G.

Proposition 2.7. If G is connected or complete and e : G — H is an epimorphism, then

H is connected or complete, respectively.

Proof. Let G be connected and h and ! be vertices in H. Then for u in e{,l(h) and v in e{,l(l)
there is a path in G connecting u and v. The images under e of the vertices and edges on that
path form a path connecting h and I/, and H is therefore connected.

Now let G be complete and / and [ be distinct vertices in H. Since G is complete there is
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an edge incident on any pair of vertices with one drawn from e\’,1 (h) and one from e\’,1 (1), and

the image of that edge is the edge hl in H, so H is complete. [

A contraction is a morphism which identifies the vertices incident on an edge, or a
set of edges.

Example 2.8. Consider the graphs below:

The morphism described by
ar> bbb ccd—dee fe

has contracted the vertices on the edge ab and the edge ef. m

A contraction is clearly an extremal epimorphism, and the fact that the converse is

true provides a characterization of extremal epimorphisms.

Proposition 2.9. The extremal epimorphisms in the category of graphs are the con-
tractions on a set of edges.

Proof. Because for a contraction f both fr and fy are onto a contraction is an extremal epi-
morphism.

Now let e: G — H be an extremal epimorphism. Let {h;} be the set of vertices in H such
that e}, (h;) is not a singleton. Then ey has identified the vertices incident on any edges in G
which join vertices in e}, (h;). Any edges of G which join a vertex v not in e}, (h;) with one in
ey (h;) are assigned by e to the edge from the image of v to h;.

Pairs of vertices v of H for which e}, (v) is a singleton and which have an edge incident
on them are the images of a distinct pair of vertices of G and the edge between them. Hence
both e, and er are one-to-one except for the images associated with the contraction of a set of

edges. U

3. Constructions in the category G.

The sum of a family of graphs with disjoint sets of vertices is the graph with vertex
and edge sets the union of the vertex and edge sets of the members of the family.

The coproduct of a set {X,} of objects in a category C is an object X together with
a family of morphisms i, : X, — X such that for any other object Y and family of
morphisms f, : X, — Y there exists a unique morphism f : X — Y such that the
following diagram commutes for each a:
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f
fa
Y

Proposition 3.1. The coproduct of a family of graphs in G is their sum.

Proof. Let {G,} be a family of graphs, let H be the coproduct of the family and let 5 G, be the
sum of the graphs. Then there are morphisms i, : G, — H and the injections f, : G, — P G,.
By the defining property of the coproduct there exists a unique morphism f : H — P G, such
that the following diagram commutes:

We show that f is an isomorphism.

We first show that fiy is onto. Let v be a vertex of 5 G,. Then v = fa, (vq) for some a,
and since the diagram commutes, v = f,,(v4) = fv(iq, (v4)), and thus fy is onto.

To see that fi; is one-to-one, let v and u be distinct vertices in H. There are two possibil-
ities. First, if fy(v) and fy(u) are in distinct graphs G, and Gg, then clearly fy(v) = fy(u).
Otherwise, fy(v) and fy(u) both belong to G, for some a. Then u =i, (u,) and v =i, ,(v,)

for some u, and v, in G,. Then

fV(v) = fV(iaV(Va) = fav(va) * fav(ua) = fV(iaV(ua) = fV(u)

since f, is one-to-one, and hence fy, is one-to-one.

Now consider f. Any edge uv in @ G, belongs to some G,, and there is a corresponding
edge u,v, in G, such that f, (uav,)=uv. Then fp(iy, (4,v,)) = uv so fg is onto. To see that
fe is one-to-one, note that the vertices associated with distinct edges in H are mapped to
distinct vertices in @ G,, hence f; is one-to-one.

Thus, f is an isomorphism in G, and hence the coproduct of a family of graphs in G is

their sum. O

The product of a set {X,} of objects in a category C is an object X together with a
family of morphisms 7, : X — X, called projections, such that for any other object Y
and family of morphisms f, : Y — X, there exists a unique morphism f : Y — X such

that the following diagram commutes for each a:
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The product xG, of a family of graphs is the graph with vertex set the product
xV(G,) of the vertex sets of the members of the family in the category of sets. Then a
vertex (vl,vz,...,vﬁ) is adjacent to a vertex (uq,uy,..., u/;) if and only if v; is adjacent
to u; for all 1.

Now define the projection morphisms 1, : XG4 — G4 by 74, (v1,v2,...,vg) = v, and
naE({(levzv'-:Vﬂ):(ulzub---:ua)}) = {Va, g}

Proposition 3.2. The product of graphs defined as above is the product in the category
g.

Proof. Consider graphs {G,} and a graph H with morphisms f, : H — G,. Then we need to
define a morphism f : H — xG, so that 7, o f = f,. Define f by

fv()=(f1, (@) f2,(¥),., fp, (V)

and
few, o)) = {(fr, (), fo, (w)yos S5, W), (fr, (@), fo, (V) S, (D))
Then
oy (fr () = o, (fi, (V) fo, (V) f3, (V) = fa, (v)
and
Moy (fe(f,v)) = 7o, (A, (), fo, (W), f3, (1)), (fr, (), fo, ), f, (0))
= {far () fo, @)
= fa({,0))

sothat mo f =f,. O

Note that with this definition of product —one of several possible in G —the product
of complete graphs is complete.

4. Reflective subcategories of G.

A subcategory R of a category C is said to be reflective if every object X of C has a
reflection rX in R and a morphism i : X — rX such that if R is an object of R and
there is a morphism f : X — R, then there is a morphism r(f) such that the diagram

below commutes:
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The reflective subcategory is called epi-reflective if the morphism i: X — rX is an
epimorphism.

In this section we consider two subcategories of G and the extent to which they
parallel the reflective subcategory of compact Hausdorff spaces in the category of com-
pletely regular spaces.

The set of complete graphs together with the graph morphisms between them con-
stitutes a subcategory K of G. The complete graph with n vertices is denoted by K,,.
It can easily be shown that K,, has C(n,2) edges.

The completion kG of a graph G is obtained by adding edges to G until it is com-
plete. Since any two complete graphs with the same number of vertices are easily seen
to be isomorphic, we can consider the completion of a graph G with n vertices to be
K,,.

Theorem 4.1. K is an epi—reflective subcategory of G.

Proof. Consider the embedding i of G into kG. i is an epimorphism since iy is onto.
If f:G — K, is any morphism from G to a complete graph, define k(f): kG — K, by

k(Fivw) = fr(v)
k(Helu,v)) = {fv(w), fr(v)}

Note that the edge {fy(u), fy(v)} exists in K,,, even if {u,v} is not an edge in G since K, is
complete. Then k(f) agrees with f on the image of G, and extends f to the added edges in
kG so that k(f) is well-defined and the diagram below commutes:

G—1 s kG

In topological spaces the category of compact Hausdorff spaces is a reflective sub-
category of the category of completely regular spaces and the morphism between a
completely regular space and its reflection is an epimorphism. Such categories are
characterized as being closed under products and extremal monomorphisms.
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Note that i in the theorem above is an epimorphism, and that we observed previ-
ously that the product of complete graphs is complete. Since it is easy to show that an
induced subgraph of a complete graph is complete, we have verified the next proposi-
tion to establish the parallel with the category of compact Hausdorff spaces.

Proposition 4.2. The category of complete graphs is closed under products and extremal

subobjects.

If we restrict the morphisms we allow, we can identify a second reflective subcate-
gory. The degree of a vertex in a graph is the number of edges incident on the vertex.
A graph is said to be r-regular if all vertices in the graph have degree r.

From Theorem 2.7 of [1] we have the following result regarding regular graphs:

Proposition 4.3. A graph G with a maximum vertex degree r can be embedded as an
induced subgraph of an r-reqular graph rG.

The process of embedding often produces a graph with many additional vertices

as the next example demonstrates.

Example 4.4. Consider the graph G below with maximum degree 3 and minimum

degree 1:

de

The 3-regular graph generated by the proposition above is obtained by recursively
connecting the vertices of G with degree less than 3 with the corresponding vertices
in another copy of G. The first graph obtained in this process has its minimum degree
raised to 2 and is shown below. The added vertices are subscripted by 1’s and the

edges added between copies of G are dashed.

de
/ \
/ c b a
| o —e °
| | !
| | [
\ e/. | |
\ | |
/
A [ [
idre ! !
| | [
\ [ [
\ ° o— o
\ ¢ by a4
\
€l'e

Repeating the graph duplicating process to raise the degrees of a and a; yields the
3-regular graph below with G as one of four isomorphic induced subgraphs.
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| o o— 06— ——-0—0— o \
| [ [ [ [ |
| [ [ [ [ |
\ o | | | | LX),
\// | | | | \\/
/N [ [ [ [ ’\
e I [ [ I ods
, [ [ [ [ |
| [ [ [ [ |

° e— 0 ——-06— 0 — /

\
\ G by . as by C3 /
\ /
[ o]

A key property of rG is that morphisms from G can be extended to rG.

Theorem 4.5. If G is a graph with maximum degree r, rG is the r-reqular graph as above,
and h: G — H is a morphism, then h can be extended to rG so that the diagram below

commiutes:
G—1—>1G
#
A r(h)
H

Proof. For each vertex v in G, let the corresponding vertices in the copies of G be denoted by
v;. Define r(h)y(v;) = hy(v). Then r(h)y is obviously an extension of hy to V(rG). Note that
since a vertex v and all of its copies are sent to the same vertex in H, the edges joining v and
its copies are collapsed into the vertex hy(v). Then r(h)g is defined by sending the edges u;v;

to the image of uv under h.[J

Theorem 4.6. The r—regular graphs are a reflective subcategory of the category of graphs

with maximum degree r.

Proof. Let H be an r—regular graph. For a graph G with maximum degree r the previous
theorem shows that a morphism h: G — H will extend to the r—regular graph rG containing
G. Hence the category of r—regular graphs is a reflective subcategory of the category of graphs

with maximum degree r. [J

Since the process of embedding a graph in a r-regular graph as demonstrated
above often generates a much larger graph, it is natural to consider smaller r-regular
graphs containing a given graph. The next example shows that this might not be a

successful direction if the extension of morphisms is an objective.

Example 4.7. The graph G’ below is a 3-regular graph. Vertices a through i and the
solid edges joining them form a subgraph G that is not 3-regular. Following [2] the
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vertices K,L and M and the dashed edges have been added to G to create G’, the
smallest 3-regular graph containing G as an induced subgraph.

Vo s L M
TN T
\. 2

The graph H below is a 3-regular graph with vertices 1 through 14.

12

9 10 1;/ .\;4
N

8 ? 6’< >'3

Define a morphism f from G to the graph H byar—1,b+—2,c— 3,d— 4,e—5,
f—6g¢g—7h—8 andim— 9.

We show that f cannot be extended to G’. To preserve incidence, K would need
to be mapped to one of the vertices 7, 8, 9 or 10, and M would need to be mapped to
one of 1, 2 or 14. But then the edge {K, M} would need to be mapped to an edge {x, v}
where x €{7,8,9,10} and y € {1,2,14}. But the graph H includes no such edge. m

o—

—_
{ 103} QJ.

Noe

5. A coreflective subcategory of G.

A subcategory I of a category C is a coreflective subcategory if for any object X in C
there is an object ¢X in Z and a morphism i: cX — X such that if I is an object in
Z and there is a morphism f : I — X, then there is a morphism c¢(f) such that the
diagram below commutes:
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If i:cX — X is a monomorphism, then 7 is a mono-coreflective subcategory.

Theorem 5.1. The category of graphs without edges is a mono-coreflective subcategory of

g.

Proof. For a graph G, let dG be the graph obtained from G by deleting all its edges. Define
a morphism i : dG — G by letting iy, be the identity on V(G). Then i is a monomorphism.
For f any morphism from a graph D without edges to G, we need to obtain a morphism d(f)
from D to dG. For a vertex v in G, consider all u in the pre-image of v in D, and define
d(f)v(u) =v in dG. It is easy to see that this definition includes all vertices of D, and makes

the diagram below commute so that dG is the coreflection of G.

D

d(f)
#

AG——mm>G

! U

In the case of the mono-coreflective category of graphs without edges there is a
direct analogy with the category of topological spaces. In that category the coreflective
subcategories are closed under topological sums and quotient maps—which are the
extremal epimorphisms in the category of topological spaces.

The subcategory of graphs without edges exactly parallels the case of the coreflec-

tive topological subcategories

Proposition 5.2. The category of graphs without edges is closed under sums and images of

extremal epimorphisms.

Proof: The sum of a family of graphs without edges clearly has no edges.
Now let G be graph without edges and let e:G —» H be an extremal epimorphism. Then
every edge of H is the image of an edge of G. Since G has no edges, neither does H. [J

45



6. Initial and terminal objects in G.

An object Tin a category C is a terminal object if for any other object A there is a
unique morphism from A to T. An object I in a category C is an initial object if for
any other object B there is a unique morphism from I to B. In G the empty graph
is the initial object, and the trivial graph consisting of a single vertex is the terminal
object.

The empty graph and trivial graphs are not very interesting. But if we alter the
definitions to replace the unique morphism by non-trivial morphisms we can uncover
some interesting characteristics of certain types of graphs.

We define an object T in a category C to be a full terminal object if for any other
object A the forgetful functor F from Morphg(A,T) to Morphg(F(A),F(T)) is onto.
Similarly, an object I'in a category C is an full initial object if for any other object B the
forgetful functor F from Morphe(I,B) to Morphs(F(I), F(B)) is onto.

Proposition 6.1. The full initial objects in the category G are the graphs without edges.

Proof: Let G be a full initial object in G and let H be the graph with two vertices hy and h,
and no edges. Then for every pair of vertices v and u in G there is a function f : F(G) — F(H)
such that f(v) = h; and f(u) = h,. The pre-image f’ of f under F is a morphism f':G— H
such that f’(v) = h; and f’(u) = h,. Since there is no edge joining h; and h, there can be no
edge between v and u. Since the choice of v and u was arbitrary, G has no edges.

Now let G be a graph without edges and H be any graph. Then any function fy : V(G) —
V(H) is a morphism in G since it automatically preserves incidence. Thus, the morphisms
from G to H in G correspond exactly with those from F(G) to F(H) in S. Hence, G is a full
initial object in G. O

Proposition 6.2. The full terminal objects in the category G are the complete graphs.

Proof: Let K, be a complete graph and G be any other graph. Let fy : V(G) — V(K,) be any
function. For {u,v} an edge in G, define fr({u,v}) = {f(u), f(v)}. This definition is possible
since there is an edge incident on every pair of vertices in K,,, and together f, and fr form a
graph morphism from G to K,,. Since fy can be chosen arbitrarily, K, is a full terminal object.

Now let G be a full terminal object with distinct vertices # and v. Then there exists a non-
trivial mapping f from the set {0,1} to V(G) such that f(0) =u and f(1)=v. It is the image
under the forgetful functor of a morphism from K,, which is a single edge, to the vertices u
and v of G . Hence, there is an edge between any pair of vertices of G, and therefore G is a

complete graph. U

There is an interesting relationship between the graphs that are full terminal ob-
jects and those that are full initial objects. The complement of a graph G is the graph
G which has the same vertex set as G but there is an edge incident on a pair of vertices
in G if and only if there is no edge incident on the pair in G.
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It follows immediately that a graph is a full terminal object if and only if its com-
plement is a full initial object. The situation is made more interesting since a full
initial object belongs to a coreflective subcategory and a full terminal object belongs
to a reflective category.

In terms of a parallel with the category of topological spaces, the graphs with no
edges correspond to the discrete topological spaces on which every function is contin-
uous, and the complete graphs correspond to the indiscrete topological spaces which
have the property that every function to such a space is continuous.

The idea that there are a lot of morphisms from a graph without edges and to a

complete graph will also be expressed in the next section.

7. Projective and injective objects in G.

In the previous section we saw that a graph without edges is a full initial object and
that we can therefore expect many morphisms to emanate from such an object. Here
we further investigate the existence of such morphisms.

An object P in a category C is said to be projective if given the following diagram

P

f

A—F5—>B

there exists a morphism g: P — A such that f =eog.

Proposition 7.1. The projective objects in G are the graphs without edges.

Proof: Let P be a graph without edges, e:G—> H be an epimorphism, and f : P — H be a
morphism. For each vertex v = fy(v’) in the image of f there exists a vertex u in ej, (v).
Define gy (v’) = u. Thus g: P — G is a morphism, f =eo g, and hence P is projective.

Now suppose that P contains an edge {u,v} and that f : P — H is a morphism such that
fv(u) # fy(v). Let G be the graph obtained from H by eliminating the edge {fy(u), fy(v)}.
Define e:G — H to be the identity. Then e is an epimorphism because ey is onto, but no
morphism g: P — G to make P projective can exist because no composition eo g can include

the edge {fy(u), fy(v)} in its image. O
An object I in the category C is said to be injective if given the following diagram

I

A>—r>> B
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there exists a morphism g: B — I such that f =goi.
Since projective and injective objects are dual concepts, we should not be surprised
that their characterizations and proofs are “dual" in nature.

Proposition 7.2. The injective objects in the category G are the complete graphs.

Proof: Let I be a complete graph, let f : H — I be a homomorphism, and let i : H - G be a
monomorphism. If v; =iy (u;),i =1,2, define gy (v;) = fy(u;). Then gy is well defined since iy
is one-to-one. If the edge v v, exists in G, then gg(viv,) = f(uy)f(u,) can be defined since I
is complete. If v # iy (u) for any u in H but is adjacent to to a vertex v’ such that v’ =iy (u’),
define gy (v) = u’. For vertices in G not adjacent to a vertex in the image of i, gy (1) can be
defined arbitrarily so long as adjacency is preserved.

Then g: G — I is a homomorphism, f = goi, and I is injective.

Now assume that L is a graph containing vertices u and v with no edge between them,
and let f : G —» L be a homomorphism such that vertices #” and v’ exist in G with fy (1) =
u, fy(v') =v. Let H be G with the edge u’v’ added. Then the embedding i: G >> H is a

monomorphism, but no homomorphism G: H — L can exist with f =goi. [
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