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1. Introduction

Over the course of just a few decades, machine learning has grown into a force which
shapes modern life perhaps as much as the combustion engine or wireless communi-
cation. As we drive to work, machine learning algorithms extract license plate num-
bers from images captured by automatic cameras at busy intersections. At work, they
measure our productivity and govern our supply chains. In our personal lives, they
power product recommendations on online shopping sites and suggestions on social
media. In our homes and on our devices, they recognize our voices and our faces.
They process our loan applications and evaluate our medical images. More globally,
they stabilize power grids and assist in planning flight routes. There is not a space in
our public and personal lives which machine learning has not at least begun to affect.

For a field as ubiquitous, it is fairly poorly represented in our common knowl-
edge. This article aims at giving a high level introduction to some core tasks, ideas
and methods of machine learning for readers who are familiar with at least some un-
dergraduate mathematics. Advanced readers may get more from certain sections, but
our goal is to present a self-contained picture which requires little knowledge beyond
calculus in multiple variables and elementary linear algebra. For readers who have
not taken many of the advanced classes, this may also motivate why certain fields of
study are of interest in applications.

One big omission in this article are deep neural networks, i.e. the models which
underly ‘deep learning.” Due to their special importance, they will be discussed in a

separate companion article.

1.1. What are Machine Learning, Data Science and Artificial Intelligence?

Broadly speaking, machine learning (ML) is the discipline of building models which
automatically recognize patterns within data sets. As such, it has a fluid boundary
with other fields such as classical statistics, data science and artificial intelligence. As a
distinction, we could say that machine learning is more concerned with computational
aspects than classical statistics: We are not content to know that an optimal estimator

exists, we also need to know to what accuracy we can approximate it in what time.



Additionally, machine learning primarily concerns itself with high-dimensional data
analysis, while the focus of classical statistics is broader.

Data science (DS) is a field focussed on working with data. As such, it employs
methods of machine learning, but it may be faced with additional practical challenges.
This may involve ‘cleaning’ data, finding duplicate entries, privacy protections and
others. To distinguish between data science and machine learning, we can draw a par-
allel to the distinction between statistics and probability theory: Both are concerned
with the behavior of random objects, but in statistics, we typically start with a dataset,
while in probability theory, we make an assumption on the distribution of the random
quantity. Similarly, in machine learning we have the luxury of developing methods
for problems with certain characteristics without having to get our hands dirty with
real data if we so desire — although it is considered good form to test theory on real
world examples.

Finally, artificial intelligence (AI) is the field of building systems which display
intelligent behavior, ideally by making intelligent decisions. Naturally, this is a field
where techniques from machine learning are important to extract information about
the problem or previous decisions, but not all Al is built on machine learning mod-
els: Sometimes intelligent behavior can at least partly be scripted directly into the
model. Generally, Al is more on the engineering side than the science side, focussing
on specific projects rather than general principles.

Naturally, these boundaries are vague and somewhat arbitrary, and different au-
thors use terms differently. As the distinction is much less interesting than any of the

fields themselves, let us get to it and learn about machine learning.

1.2. The curse of dimensionality

Why is it hard to find patterns in data sets? After all, we live in the age of ‘big data’.
Datasets with thousands or even millions of datapoints are common.

The main complication comes from the fact that data is typically very high-dimensional:
A small color image for instance is described by 3 color channels (RGB) and 256 x 256
pixels, corresponding to 196,608 = 3 - 2562 variables (dimensions). In natural lan-
guage processing, words from the dictionary of the language are typically ‘embedded’
as vectors in a space of dimension d € [100,1000]. Even for the smallest application,
each data point is typically described by at least a dozen dimensions.

If we want to find out for example how a function f behaves on a set U, it is a
reasonable approach to cover U with a fine net of points {x;,...,xy} and extrapolate
f(x) from f(x;) at a point x; which is close to x. If U = (0, 1) is an interval, we achieve
a resolution to the level € > 0 with approximately 1/¢ points:

(6,26,35,...,N£)



where N =|1/¢] is the largest integer below 1/¢. In two dimensions, we need approx-
imately (1/¢)? points to achieve a comparable resolution on the square (0,1)%:

{(ie, je): 1<, j < [1/e]}.

In general in dimension d, the number of points needed for a grid of fineness ¢ scales
like (1/¢)?. This exponential dependence on d quickly becomes prohibitive: For a
relatively course grid of fineness ¢ = 0.1 in dimension 4 = 100, we would need more
points than there are particles in the observable universe (estimated at about 108%).
So, even when we have millions of datapoints, they are geometrically ‘sparse” and
there are large regions of our data domain where we have little or no data. This makes

it challenging to infer what happens away from the ‘few’” datapoints we have.

2. Some Flavors of Machine Learning

In machine learning, we are looking to recognize patterns and structure in datasets.
Depending on what information we are given about our data, there are different kinds
of problems that we may want to try and solve.

2.1. Supervised learning

Supervised learning is the most basic variety of machine learning. Our data comes in
pairs (x;, y;) where x; is the data point and y; is a ‘label’, usually a real number or vector
of real numbers, or a descriptor which we translate into a real number or vector. When
there is a finite number of possible labels {y!,...,*}, we speak of classification prob-
lems, trying to sort data x into the k different classes. If the label space is continuous
(e.g. the real line), we speak of regression tasks.

In a classification problem, the data x might be images, which we can understand
as elements in a very high-dimensional space, and the labels 1,...,k could correspond
to k different classes we might sort them into. In a regression problem, we could
receive the same set of images, but we might want to predict a score between 0 and 100
on how emotionally impactful they are to a user or how likely they are Al-generated.

The possibly simplest strategy in supervised learning is to select a class of parametrized
functions h(w, x) of parameters (‘weights’) w € RP and data x € R? and try to minimize
the ‘mean squared error’ between model output and desired label over the dataset

n
Lyse(w) = 21—” Z|h(w, Xi) = }’i|2-
i-1

This approach is classical in many applications with a function class of linear func-

tions: p =d and h(w,x) = w’x = Z;-izl w;x; or polynomials for a one-dimensional vari-



able x, i.e. h(w,x) = Zle w;x'~!. In a more modern setting, we could use neural net-
works here, which we will discuss in a follow-up article.

For classification problems, the mean squared error (MSE) may not be the optimal
criterion to minimize. For instance, consider a binary classification problem (i.e. there

are only two labels 1 and —1) with four data points

(x1,91) = (=16,-1), (x2,92) = (0,-1), (x3,93) = (4, 1), (x4, 94) = (8,1)

and an affine linear classifier h(w,x) = wyx + w,. Since we know that there are only
two labels, we only need to get the sign right: We say that the function h(w,-) predicts
label 1 at the point x if h(w, x) > 0 and label —1 if h(w, x) < 0. We note that

4
Viyse(w) =V, % Z|w1xl~ +wy —y,-|2 = iZ(wlxi +wp —yi)(?]
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The minimizing parameters w;,w, can be obtained by setting the gradient to zero,

which corresponds to solving the linear system:

O = sl sl

We see that h(w,x,) = h(w,0) = w, > 0, but we know that the label of x, should be
—1! Based on our classifier h(w, x) we would mislabel one of our known datapoints.

The outlying datapoint at —16 (which is far away from the others) has driven us to
misclassification. On the other hand, we see that it is possible to find a classifier in
the class of affine linear functions which has the correct sign at all known data points,
for instance h((1,-1),x) = x— 1. For this reason, we sometimes minimize different ‘loss

functions’ of the form .
1
Lw) =~ ;K(h(w, x;), i)

instead. A popular example is the ‘logistic loss’
1 n
Llog(w) = ; ;glog(h(w’ xi)’ Vi )’ glog(h’ ZJ) = log(l + exp(—yh))

or its multi-class version, cross-entropy loss.! Here, log(1 + exp(z)) > log(2) if z < 0
(i.e. the loss is at least log 2 if the label y and the output h(w, x) of the classifier have

! Unfortunately, the terminology can be confusing — some authors refer to ¢ as the loss function,
while others — especially when it comes to training — refer to L as the loss function.



different signs) but log(1 + exp(z)) = exp(z) < 1 if z is large and negative. Thus logistic
loss drives h(w,x;) to have the same sign as y; at all given data points, if possible,
and then increases the magnitude of the output of h. If we drove L, to zero for the
example dataset above, after a while we would find a (large) multiple of the ‘maximum
margin’ classifier x — 2 which changes sign in the middle of the two data-points x, = 0
and x3 = 4 where the class changes.

In binary classification, we exploit that only the sign of h(w,x;) matters, not its
magnitude, but also for regression problems there are situations where MSE loss is
not the best choice. The power g = 2 in the loss function £,(h,y) = |h - y|1. is chosen
because it makes the computations easiest. Sometimes, we replace it with a smaller
number 1 < g < 2 to be more stable against outliers: If there is a single point which
really does not fit the pattern, the square amplifies the impact of the largest misfit
considerably. Especially if we do not trust the labels fully, ¢ = 1 may be the better
choice.

Of course, MSE loss also has its advantages. Since it is quadratic, to find the mini-
mizer, we only need to solve a linear equation (usually in many variables). By compar-
ison, logistic loss does not have a minimizer if perfect classification is possible as we
can always multiply w by a large positive number and reduce Lo, slightly. This can
make it harder to work with logistic loss, and it is non-trivial to find functions of low
loss. This is the problem of optimization.

Another question arises from the use of a small dataset: If we perform well and
classify our four data points correctly, do we perform well on the true problem? This
is the problem of generalization. It is particularly important when there are many
different parameters w for which h(w, x;) perfectly fits all the labels y;, for instance
because we have few data points, but many variables per data point (and thus also
many parameters in the class of linear functions). We will come back to both in the

context of deep learning.

2.2. Unsupervised learning and hybrid settings

Assigning labels y; to data points x; can be expensive, time-consuming and some-
times not what we are looking for. For instance, we may simply want to reduce the
dimension of our dataset in order to visualize it, or we may search for a good repre-
sentation of our data which can be used ‘downstream’ for various supervised learning
tasks, potentially with several different sets of labels. We can picture an advertising
agency which is trying to identify different groups within a population for a range of
campaigns, not just a single assignment.

Two prototypical tasks of unsupervised learning are dimension reduction and clus-
tering. Dimension-reduction allows us to find a simpler representation of our data
which requires less storage space and captures the main relational features of our

task. In clustering, we for example want to find ‘communities’ in a social network



given only the information who is friends with whom (and possibly how often they
liked each others posts etc), but crucially no labels.

The boundary between supervised and unsupervised learning can be fluid. For
example, if our data lives in a high-dimensional space RP, we can treat x; as both data
and label and try to minimize
|2

%Zlﬂg(xi)) x

in classes of functions g : R — R? and f : RY — RP, i.e. we are trying to ‘learn’ the
identity map on our data domain while passing through a much lower-dimensional
space RY with d < D. As in the supervised case, we typically parametrize f,g by
elements of Euclidean spaces RPf,RPs. If f,g are linear functions, this is a classical
technique known as principal component analysis (PCA), whereas we call f o g an auto-
encoder if both f and g are parametrized by neural networks.

There are also many hybrid settings between supervised and unsupervised learn-
ing, such as semi-supervised learning (we have labels for only a small subset of our
datapoints), active learning (we have the budget to label a subset of our datapoints
which we can choose ourselves), self-supervised learning (we have pairs of similar and
pairs of dissimilar data, but no further information) or scenarios where we have labels
of varying degrees of reliability (labelled by expert vs labelled by lay person).

We will see some examples in this setting in Section 3.

2.3. Reinforcement Learning

Both supervised and unsupervised learning tasks generally start with a dataset. Re-
inforcement learning is different in that it starts with an ‘environment’ in which an
‘agent’ can take actions and observe the environment’s reaction. This more closely
mimics human learning where for us, the environment would be the physical world
and the agent our conscious self. If I take the action ‘eat at Primanti’s’, the environ-
ment reacts by changing my state from hungry to full. If I take it immediately again,
it reacts by changing my state from full to sick.

Reinforcement learning is a useful framework to think about games of strategy: I
move a piece (action), my opponent/the environment moves a piece (reaction). The
actions available to me and how the environment reacts depend on the current state
of the game board, and often I have no way to predict exactly how the environment
will react. My goal is to maximize a reward in the future (I win) where (partly for

practical reasons) we value the reward more highly the earlier it occurs: We maximize



the expectation of the value function

V(e)=) p'Re
t=0

over the actions a (moves) available to us. Here p € (0,1) is a discount factor which
emphasizes early rewards and R; is the reward in the t-th time step. In the simplest
case, the reward could be 1 for a winning move, —1 for losing and 0 otherwise, but
in many cases, there is a more complicated incentive structure in every step (think of
investing money and receiving a payout every year, not just at the end). Of course, a
lot is hidden in this simple expression: We need to consider not just the immediate
payoff of an action a, but also which state it takes us to next...

There is a crucial difference between reinforcement learning and other learning
tasks: We initially know nothing about the environment or the actions available to
us. We are playing a game without understanding the rules. The initial phase of play
is ‘exploration”: We are trying to figure out what we can do and how the environ-
ment reacts. The second phase is ‘exploitation”: Once we have found a few moves that
work well, we want to gravitate towards those. The tradeoff between exploration and
exploitation is a main motif in the analysis of reinforcement learning. Once we under-
stand the game, we want to mostly rely on actions which we know to work well, but
every once in a while, we should try something new to see if there is an even better
option.

Reinforcement learning is simple if there is a small set of states we can be in and
actions we can take, but it becomes very complicated if the action and state spaces are
large (Go rather than chess, financial markets) or even infinite (self-driving cars). The
main advance of the last decade was the use of neural networks to parametrize our
strategies (or, in the parlance of reinforcement learning, “policies’).

Of course, many tasks can be approached in various ways. For instance, AlphaGo
(the first Al to beat a top human player in the strategy game Go) was trained initially
using supervised learning and transitioned to reinforcement learning once it had al-
ready become a strong player. In the supervised phase, it learned a probability dis-
tribution on the set of actions (conditional on the state of the game) which prioritized
moves that strong players would take in a given situation. In the reinforcement phase,
it played against other Als and itself.

The pre-training gives us a ‘warm start’ for the reinforcement learning process:
Rather than starting to learn as a toddler, we start as a teenager with a fairly solid

grasp of the world around us.



3. Advanced Mathematics in Machine Learning: An Example

As an example, let us highlight connection between topics which may at first glance be
surprising: Partial differential equations, differential geometry, and machine learning.
The appearance of deep mathematics of all varieties in machine learning is not by
chance: As machine learning grew into the powerful tool it is today, scientists from all
fields became fascinated and flocked towards ML to try and understand its promise.
Some were curious if ML could solve their problems, others were asking the more
foundational questions: Why does it work? Can we guarantee that it works? What are
its limitations? And, could we make it work even better?

Mathematicians were generally in the latter camp. As researchers with vastly dif-
ferent areas of expertise developed an interest in machine learning, new methods and
techniques developed accordingly. This means that no matter which class you take, it
may come in handy somewhere down the road if you decide to pursue ML. Indeed, its
interdisciplinary nature within mathematics and beyond is a large part of what makes
machine learning so exciting to work in today.

We first review some of the mathematical motivations.

3.1. Partial Differential Equations

Partial differential equations (PDEs) are one of the most versatile tools of mathemat-
ical modeling. In the sciences they are used to express the balance between rates of
change of various quantities over space and time, such as the diffusion of heat in a
medium, force balances in continuum mechanics or reaction rates in chemistry. They
also have curious links to random processes such as Brownian motion and therefore
also appear in very different contexts like mathematical finance.

We consider an example from physics, which will guide us below in developing a
model for data science. Imagine a soap film spanned by a wire. Mathematically, this
we model this as a surface given by the graph of a function u : U — R, where U c R? is
an open set (the region below the film). The wire is given by the ‘boundary condition’
u(x) = g(x) for some function g : JU — R (where dU is the boundary of U). But what
describes the shape of the surface inside the wire?

A fairly good first model is to say that the soap film wants to have area as small
as possible (i.e. as small as is compatible with the boundary condition). Knowing

calculus, we can calculate the area of the graph of u as

1
Au) = J V1+]|Vu||? dx = f 1+ 5 IVu|? dx
U U

where we replaced the square root by its first order Taylor approximation at 1. The
first expression is more physical, the second one easier to work with. If we have u

which minimizes E(u) = %IU IVu||>dx among all functions with boundary values g,



then for all functions ¢ which are zero on JU and all t € R, we know that e,(t) =
E(u + t¢) has a minimum at zero and thus

l 2 ﬁ 2 )
t:o(2L”W” dx+tL<Vu,V¢>dx+ > LIIWPII dx
:L(Vu,vcmdx:Lv-(cp.w)—(pmdx:LU¢avudA—fU¢Audx.

0= e(’P(O)

_4d
o dt

Here, we used the divergence theorem to convert a volume integral into a bound-
ary integral, much like the fundamental theorem of calculus in one dimension. The
boundary integral is zero since ¢ is zero on the boundary, so fch)Au dx = 0 for all
functions ¢ which are zero on the boundary. By a result known as the ‘Fundamental
Lemma of the Calculus of Variations’, we can conclude that u solves the PDE Au =0
in U and u = g on dU. This partial differential equation is linear in u since the ‘en-
ergy’ E is quadratic. This partial differential equation has a unique solution, so rather
than minimizing E in an infinite-dimensional function class, we only have to solve a
linear PDE, which is much like solving a linear system of equations in linear algebra.
Efficient techniques of numerical linear algebra for this purpose have been studied for
many decades. Working directly with the square root, we would deal with the much
more complicated PDE V - (Vu/\/l + ||Vu||2) =0.

Let us briefly note that the geometry of U has massive influence on the expected
behavior. For instance, if the boundary condition of u is +1 on one side of a handlebar
shape, —1 on the other and (in a slight departure from our previous model) unknown
in between, then the function u is mostly constant on the two blobs and transitions
where the figure is thin in between. This way, the set where the gradient is large has
small measure. If U were a disk, on the other hand, there is no ‘cheap’ way for a short
boundary. We will come back to these ideas below in the context of data science.

3.2. Differential Geometry

Differential geometry is one of the fascinating fields which start as the purest of math-
ematics and only later turn out to be essential in applications. As a field distinct from
general geometry, it can be traced back roughly to Carl Friedrich Gauss, who con-
sidered a statement on the curvatures of surfaces in R? his finest accomplishment or
theorema egregium (“Remarkable Theorem”, 1827). Following Gauss’ work, his PhD
student Bernhard Riemann studied abstract n-dimensional ‘surfaces’ which were not
embedded in any ambient space. This was an entirely esotheric pursuit until it became
the language of general relativity in the early twentieth century.

The objects of differential geometry are so-called ‘manifolds”: Spaces which look
like the flat Euclidean space locally, but which can have a more complicated global
structure. Imagine, for instance, the surface of a sphere or a doughnut (a ‘torus’) or
the chassis of a car. All of these look essentially like the plane to an ant, but more

9



globally, they have a very different shape (topology) from the Euclidean R?. Even
locally, unless we zoom in to an infinitesimal length scale, we can see a geometric
difference: Curvature.

Since manifolds locally look like a slightly distorted version of Euclidean space, we
can develop a geometric theory of manifolds which allows us to carry over important
notions of vector calculus: Gradients, divergences and Laplacians. We can therefore
repeat the arguments of the previous section more abstractly and solve PDEs on man-
ifolds. One big difference arises: There are manifolds such as the sphere or the torus
which do not have a boundary! In many cases, this makes things easier for us in prac-

tice (at the expense of a more abstract underlying framework).

3.3. Application in semisupervised learning

More recently, differential geometry entered the stage in data science where we ob-
serve that real data has a sort of low-dimensional structure in a much higher-dimensional
ambient space. For instance, if we were to choose the color values for the pixels of
an image independently, we would create some form of white noise, not a real im-
age of anything. Sensible images occupy a vanishingly small region within the set of
all images of a certain resolution. The ‘manifold hypothesis’ in ML posits that the
set of sensible data in various applications is well-described by a smooth manifold
of moderately large dimension in a much higher-dimensional ambient space, e.g. a
seventeen-dimensional ‘surface’ in a seven hundred-dimensional space.

Given a finite collection of datapoints xy,...,x, in R?, we can imbue them with
a structure as a mathematical object known as a ‘graph” The points x; are known

as ‘vertices’ and two points x;,x; can be connected by an ‘edge’ ¢;;. Fairly common

ways to construct a graph from a]dataset in R would be to connect all points, connect
points if they are closer than a cut-off distance ¢, or connect every point to its k nearest
neighbors for some k <« n. We can then also associate a ‘weight” w, to an edge e which
should be large if the points are close and small if they are far apart (for instance
w,,; = exp(-lx; - x112).

The edge weights provide us with an analytic structure on the graph, and we can
define ‘differential operators’ such as the ‘graph-Laplacian’ of a function u on the
vertices as

Au(x;) = Zwij(”(xj) - M(Xi))
J#1
where the sum goes over all indices j such that x; and x; are connected by an edge. In
a special case, this gives us a familiar object! If the vertices are equidistant on a line
x; = th with a small length-scale h > 0 and the weights w;; are 1/h?if j =i+ 1 and zero

otherwise, then

10



Au(x;) = il 1):2)_ u + u((i - 1):2)_ u(ih) _ ”((i + 1)h)_ 2uh(2ih) + u((i ~1)h)

is the standard difference quotient approximation of the second derivative of u at x;!
The same works on a square grid in two (or higher) dimensions, where we obtain
a difference quotient approximation of the Laplacian. More generally, if we assume
that the data points x; from which we build our graph are sampled independently
from a probability distribution on a manifold, we can show in a precise way that the
graph Laplacian converges to a differential operator on the manifold as the number
of samples approaches infinity. In the simplest case, the limiting object is the natural
‘Laplacian’ on the manifold, but in general, it will also depend on the probability
distribution.

Now, let us return to the semi-supervised learning setting: We have many data
points x;, but we only know the labels y; for a few of them. We are looking for a
function u on the set of data points which predicts a label y in such a way that if x;
is close to x; and the label of x; is known to be y; then also u(x;) is close to u(x;) = ;.
In between known points, the function should not be too wild and oscillatory. We
are looking for a function which is as ‘flat” as the known labels permit it to be — very
much like a soap film with a wire at the boundary. There are many ways to specify
what kind of function u we are looking for, but one of the easiest is to enforce that the
square gradient should not be large ‘on average’. This is exactly analogous to our PDE
example.

For analytical purposes (but not necessarily numerical implementations), we can
assume that all vertices are connected by setting the weights to zero if we create addi-
tional connections this way. We then try to set up an ‘energy’ to be minimized:
|2

E(u) = % Zwij|”(xi) — u(x;)
Lj

subject to u(x;) = y; at all vertices where we know the label. Heuristically, we minimize
the square gradient of u on the graph subject to a ‘boundary condition” given by the
known labeled data. The weights tell us how important it is that u(x;) and u(x;) should
be close together —recall that the weights are large if ||x; — x;| is small.

For simplicity, abbreviate u; := u(x;). Then, if u minimizes E and x; is not one of
the labeled pints, we find that

11
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Thus also on a graph, minimizing a suitable average of the ‘square gradient’ (here:
the squared difference of u at neighboring points), we can instead solve a partial dif-
ferential equation involving the graph Laplacian. In practice, this ‘PDE’ boils down to
solving a system of linear equations:

u(x;) =vy; if y; is known
Au(x;) =0 otherwise.

In general, these linear systems may comprise thousands of equations, so ideas of ab-
stract linear algebra and numerical linear algebra become crucial ingredients of ma-
chine learning in practice. We observe that the fact that we had unlabelled data points
was crucial in constructing our predicted labels u(x;). Even if we do not know the
correct answers for all the questions, it may be very helpful to know what we will be
asked about.

Finally, let us note that there are other notions of a graph-Laplacian, while there is
only one version of the Laplacian in the Euclidean case. For a more detailed introduc-

tion to analysis on graphs, see e.g. [Tan24].

3.4. Why do we like PDE-inspired algorithms?

We have seen that we can use ideas from fields like partial differential equations and
differential geometry to inspire techniques in machine learning. The question re-
mains: Why would we want to go this route? And, even if the model seems sensible,
why do we care about similar models in these more abstract fields?

When considering partial differential equations on domains in R¢, things are con-
ceptually more complicated than when we think about the graph Laplacian: We deal
with functions instead of vectors and with differential operators rather than matrices.
Still, our life becomes easier in other ways: We don’t have to deal with a positive length
scale in a graph and can instead consider the homogeneous and isotropic Euclidean
space. This allows us to obtain geometric insights into the structure of solutions which
can enable a better interpretation of algorithms on graphs.

For instance, imagine that we are given ‘labels’ u = 0 on the boundary of the unit
ball B;(0) in R? and u = 1 at the center of the ball. If 4 > 3 and u”* is any function
such that #(0) =1 and u(x) = 0 if ||x|| > 1, then also up(x) := u(Rx) satisfies the correct

12



boundary conditions for any R > 1 and
E(ug) = fannz dx = fRZ IV (Rx)||> dx = R* j IV (Rx)||*R? dx = R> ¥ E(u)

by the change of variables formula in d dimensions. The factor R? arises since we
need the determinant of the Jacobian matrix R - I;,4, which is precisely R, Clearly
limg_, o+ E(ug) = 0 and up converges (pointwise) to the function which is 1 at the origin

and 0 everywhere else. By considering the specific example

1 ||x|| < e7R 1 lIx|| < e~ R
_ ) logllx| -R _ log ||x|| -R
ug(x) = oge®) € = Ix[[ <1 ={-== e "<|x[|<1
0 x|l > 1 0 |lx[| > 1

we see that the same is true in dimension d = 2 since

fannzdx _ f
B1(0)\B,-r(0)

approaches zero as R — oo. In the parlance of applied analysis, we have shown that

2 2 (1 21

X
2 g = 28 -
YTR w2 R

1
—log’(||x
R g"(lxll) Il

a single point has ‘harmonic capacity zero’, i.e. it is too small to prescribe a boundary
condition on. We observe something similar on graphs: If the set of labelled points is
too small, the ‘function’ u on the graph is not a smooth sheet spanned by its boundary
data, but an almost constant function with a few heavily localized spikes. Insights
from PDE theory allow us to develop remedies, such as Poisson learning [CCTS20] or

minimizing j||Vu||p dx for p > 2 instead.

3.5. Unsupervised learning: Embeddings

There are other applications of these ‘PDE’ ideas in machine learning. For instance,
we have claimed above that the shape of a domain influences the way PDEs behave
and favor for instance rapid transitions in narrow corridors rather than going through
the center of the domain, if possible.

This ‘domain dependence’ is present even for differential operators like the Lapla-
cian A = Zle d;d; which look universal and domain-independent. This is perhaps
not surprising — the same microscopic laws govern fluid flows in the ocean, in straight
pipes and in porous media, but their behavior is quite different. The presence of phys-
ical boundaries has massive influence on the behavior of solutions.

Studying the behavior of the Laplacian operator of a domain or manifold is called
spectral geometry because we study the eigenvalues and eigenfunctions (the ‘spectrum’)
of the Laplacian operator. This is defined much as in linear algebra for matrices:
We look for functions u and real numbers A such that Au = Au with the condition
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that u = 0 on the boundary of the domain (if non-empty). We can guarantee the ex-
istence of these as in linear algebra since the Laplacian is symmetric and negative
(semi-)definite:

J(Au)vdx:—f (Vu,Vv)dx:J uAvdx, J uAudx:—f IVu|?> dx < 0.
U U U U U

Similarly, the graph Laplacian is represented by a symmetric and negative semi-definite
matrix. The starting point of spectral geometry is the question whether you can ‘hear
the shape of a drum’: The eigenvalues of the Laplacian tell us the natural frequen-
cies of vibration when hitting a membrane of the shape U (using the related ‘wave
equation’, another common PDE).

If we accept the premise that the eigenfunctions of the Laplacian tell us something
about the geometry of a space, we can use the idea for data visualization: For instance,
given a graph of data points xj,...,x, in a very high-dimensional space R?, we can
visualize them in much lower dimension k by reporting only the values which the first
k eigenfunctions uy,..., u; (eigenfunctions corresponding to the eigenvalues closest to
zero) take at these points:

(ul(xl),...,uk(xl)), ,(ul(xn),...,uk(xn)).

This yields a k-dimensional representation of our n data points in a way which only
depends on the geometry of the dataset. This can be used for visualization (when k is
two or three) or as a representation for further downstream tasks. Such an embedding
can give us much more insight than just plotting the coordinates directly, for instance.
The eigenfunctions corresponding to larger eigenvalues tend to be more oscillatory
and less informative.

Differential geometry is important in its own right, not just when paired with
PDEs. For instance, dimension reduction techniques which embed data into hyper-
bolic spaces (manifolds of constant negative curvature) can often embed into much
lower dimension than projections into Euclidean spaces. This is true for data with
hierarchical structure (plane is a vehicle, Boeing planes are planes, Boeing 737 is a

Boeing plane, ...) and even some networks of data (such as social networks).

4. Machine Learning and Society

Every new technology in human history has brought with it societal changes, most
of them unforeseen when the technology first became available. The steam engine
revolutionized manufacture and transportation. Electricity quite literally illuminates
the human race. Computer was a job title before it became a piece of technology. Over

the course of less than 20 years, the internet grew from a scientific project into the
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information highway it is today, and the place where many of us spend a substantial
portion of our lives.

Due to technological progress, many professions have changed over the years, oth-
ers have disappeared while new ones have been created. Predictions have often proved
incorrect in the long run. The influential economist John Maynard Keynes predicted
in [Key30] that by now, the work week should be a mere 15 hours long due to automa-
tion. Needless to say, he was wrong [Kes15].

Artificial intelligence may well be the latest in a long sequence of world changing
inventions, and as much as any discussion of its impact may be speculation, we must
at least try to consider the impact of these advances as they occur, and try to anticipate
what their impact might be over time.

At the conference on Neural Information Processing Systems (NeurIPS) in 2017
(one of the largest and most prestigious conferences on machine learning), Ali Rahimi,
a research scientist at Amazon, was awarded the ‘test of time’ award for an article he
had published at the same venue ten years earlier. In a very memorable (and somewhat
controversial) acceptance speech, he argued:

We've made incredible progress. [...] There’s a self-congratulatory feeling in
the air. We say things like “machine learning is the new electricity.” I'd like to
offer another analogy: Machine learning has become alchemy.

Now, alchemy is okay. Alchemy is not bad. [...] Alchemists invented metal-
lurgy, ways to dye textiles, our modern glass making processes and medications.
Then again, alchemists also believed they could cure diseases with leeches and
transmute base metals into gold.

If you're building photo-sharing systems, alchemy is okay. But we’re beyond
that now. We’re building systems that govern healthcare and mediate our Civic
dialogue. We influence elections. I would like to live in a society whose systems
are built on top of verifiable, rigorous, thorough knowledge and not on alchemy.

More recently, chatbots have laid bare the enormous potential and terrible short-
comings of systems built on machine learning: They perform incredibly well on aver-
age, but fail catastrophically in specific cases. This is likely not a coincidence: There
are settings where we can prove rigorously that it is easy to find a model based on
data which performs well on a task on average, but nigh impossible to find one which
performs well in the worst case scenario (namely, we hit the curse of dimensional-
ity [CLW23]). Perhaps more insidiously, machine learning can fail us when it works

precisely as intended.

4.1. Energy and Materials Cost

Most major advances in artificial intelligence in recent years, at least in experimental

research and practical implementation, have come from a small selection of companies
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and well-funded start-ups which cannot be matched by other places of research. In
large part, this is due to the enormous amount of resources which advanced Al models
need during training. We will discuss what neural networks are and why they are so
computationally intensive in a forthcoming companion article, but for now, let us look
at some figures without thinking about where the energy goes.

The two main requirements of Al are computer chips and electricity. GPT-4 —
the model underlying the current version of ChatGPT, the follow-up to the one that
went viral — is estimated to have about 176 trillion parameters. Even to store the
parameters, this requires about 2.75 TB. In order to train such large models, we need
to split them up over multiple machines, and most AI computations take part in large
computing centers which require electricity not just to run the machines, but also for
cooling.

The effects are noticeable also during deployment. A query to ChatGPT consumes
about 10 times the energy of a google search in a low estimate [Sac24] and about 25
times according to [New24]. This is not a trivial quantity, and the energy used by
companies such as Microsoft, Google and Meta have increased by about one third to
two thirds over the last four to five years, largely due to Al This has even prompted
companies to design data centers which generate their own, clean energy.

In a few years, the energy consumption of Al overall is estimated to account for
about 0.5% of electricity used worldwide, roughly the equivalent of a small coun-
try such as Sweden or Argentina. For comparison, data centers (which power cloud
computing and search engines) currently use about two to three times that, and com-
putations for crypto mining use another 0.4%. Much more detailed information can
be found in articles such as [McQ23, Erd23, SMW*24, Gel24].2

While energy costs are high, at least in parts of the world, chips have been a more
serious limiting factor globally. The AI boom has coincided with conflicts around the
planet and a global pandemic, both which have heavily affected the semi-conductor
industry and lead to the chip shortage following 2020. Certainly, the issue has not
been helped by the fact that the same resources — chips and power — have fueled an-
other computationally intensive pursuit: ‘mining’ for crypto-currencies.

At this time, much of our energy comes from finite energy sources, which are addi-
tionally implicated in the destruction of our environment. This, together with the use
of rare materials to produce chips has naturally led to environmental concerns about
the cost of Al It is worth remarking, though, that these issues are also felt throughout
the industry in monetary costs to the extent that many Al companies are currently
not profitable. While companies like Apple, Meta, Microsoft and Google have other

sources of revenue to invest in a speculative future industry, most smaller companies

2 Many academic institutions have an institutional subscription to various newspapers which allows
members to access articles for free. At the time of writing, you can access the New York Times that way
if you are a student at Pitt.
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are kept afloat purely by venture capital.

4.2. So we can solve it. Should we?

Modern Al has been incredibly successful in solving problems which were previously
considered intractable: It enabled the first computer program that could beat top hu-
man players at the strategy game Go and facilitated significant advances in under-
standing protein folding.

There are many more harmless or beneficial examples, but also a few that should
give us pause: Searching a person on the internet by an image. Generating fake images
and movies for propaganda. Deblurring of images. And some technologies may be
helpful or harmful, depending on our trust in the actor who uses them: How do we
feel about real time face recognition for cameras in public spaces?

Fake images have entered the political discourse in the United States [Vig24] and
popular culture [Wik24] in disturbing ways, along with the accusation that real images
are fake [EKW™24]. Face recognition has been used in New York to bar lawyers from
entering a venue whose owner was involved in litigation with them [HK22] and in
Moscow to identify and detain dissidents [STF21].

If a stranger takes a photo of us in the street, do we want them to be able to find our
names? Where we study, where we work, what we wrote on the internet as teenagers?
[Hil20, Hil22] go into much greater detail on this example.

Beyond Skynet-doomsday scenarios, there are real threats for Al to erode trust and
privacy in our society. The ability to generate convincing fake audio and video in
a ‘post truth’ society invites abuse by bad actors, and technology has moved much
faster than the legal framework to contain them and harness their power for social
good. For now at least, we are relying on scientists themselves to not develop detri-
mental technology that they could sell to questionable parties for profit, and relying
that no questionable characters learn to code. If the rise of Al-aided scams [Tho24]
and bullying by deep fake pornography [Kra24] is anything to go by, this may be a
naive approach.

The question of ethical behavior by Al scientists is amplified by a drive to make Al
accessible, publish code, and enable non-experts to modify models. If Al is accessible
to us all, we all must behave ethically. Conversely, keeping Al under the control of a

small number of companies comes with its own, different set of problems. ..

4.3. Privacy and Intellectual Property

There are cases where a technology may not directly be harmful, but we venture into
murky ethical and legal waters in its creation —just think about electric cars and laptop
computers which rely on lithium-ion batteries for which materials are at times mined

in ways that displace communities and poison the environment [Gre22] and processed
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by poorly protected migrant workers [SH23].

Beyond energy and hardware, the thing that machine learning models require is
data. The more data we have, the better models we can create. Large Language Models
are now at the point where there is not enough text in the English language (and in
particular, high quality text).

The New York Times has sued OpenAl for using their articles without consent to
train Al models. Meta considered purchasing an entire publishing house to gain access
to their material, before deciding that they would not be competitive if they took this
time and ostensibly used copyrighted material following OpenAlI’s ‘market precedent’.
Both Google and OpenAl are believed to have transcribed spoken word from YouTube
videos for training material, potentially violating user agreements. Datasets for image
generating tools like DALL-E, Midjourney, and Stable Diffusion have been generated
by automated scraping tools for online images and have been found to contain artists’
copyrighted works, revenge pornography, and propaganda images of executions by
ISIS. At the time of writing and to the best of my knowledge, there is no definitive
ruling on whether companies violated the law in the creation of their training data
sets.

A much more detailed description of the struggle to create training datasets for
large language models can be found in [MKF*24].

4.4. Dataset bias: Quis custodiet collectores datorum?

Clearly, data is needed in machine learning, and it is not easy to find enough of it.
At its heart, machine learning uncovers patterns in datasets. Based on its discoveries,
we aim to make decisions which will impact the real world. Crucially, we must bear
in mind that at no point during its creation or deployment has the machine learning
model had access to the real world, and has only ever seen it through the lens of a
dataset. By necessity, any collection of data includes the biases, conscious and sub-
conscious, of the person who assembled the dataset and the society which produced
it. A large dataset is not necessary a good dataset.

Some of these biases are easy to catch. Early machine learning models trained to
classify images of human faces according to gender used blond hair as an indicator of
female gender since blonde women were overrepresented in training data taken from
online image collections. While efficient on their training data, such biases would
make a model vulnerable to deliberate manipulation using hydrogen peroxide and
hair dye.

There are many great sources documenting biases based on race and gender in high
impact areas such as medicine or criminal justice [Pet85, Kov19, Fri24]. Even expert
judgements are, at times, shockingly inaccurate. When present in datasets, these bi-
ases are encoded in machine learning models and given a veneer of scientific accuracy.

Both medicine and criminal justice have seen applications of machine learning. While
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seemingly unmoved by human motives, these models are at best as objective as the
people involved in their creation.

Humans can be fantastically irrational and biased creatures. A priori, a computer
has no preconceptions, yet a computer models taught by humans to replicate human
assessments has all the fallibility of a human and all the hidden pitfalls of a black box
model trained using undisclosed methods.

4.5. Explainability: errare artificiale est

We have discussed, on a high level, several machine learning models. Some of them

are ‘explainable’: If the output of a linear map h(x) = w’

x is large and positive, we
can try to figure out which variables had a big input and look at their signs. Neural
networks on the other hand do not enjoy this benefit and are still considered a ‘black
box’ for most purposes. We can admire their superhuman average performance on
many tasks, but in certain settings, we want to know why the network makes a certain
prediction: Receiving a medical diagnosis, we may ask how the model or doctor came
to its conclusion. Any model mostly considers statistical correlation, but at least in
simple ones, we can understand which factors play a role.

It is comparatively easy to train neural networks to perform well on average (they
are ‘L2-close’ to the target function), but very hard to make them perform well in the
worst case (‘L*-close’) in the sense that we hit the curse of dimensionality here. For
some applications, ‘good on average’ is sufficient: More cannot be expected in financial
investing, for instance. There is no strategy that always succeeds. But the possibly
catastrophical failure of ML models can be terrifying in settings with potentially life-
altering implications such as self-driving cars, medical diagnostics or court rooms.

Naturally, humans err. Human drivers are certainly not perfect, and medical doc-
tors are not nearly as reliable as we want them to be. Like machine models, humans
learn from examples and in most situations merely reproduce behavior they previ-
ously observed. In their favor, we can often understand how and why humans fail in
specific ways. The issue with machine learning are its unpredictable failures: Nobody
wants to be in a car that suddenly stops on the highway for a reason that no human
can understand.

As of yet, even various industries has been skeptical of integrating AI. Models
are not sufficiently reliable for widespread deployment in all areas, and it is unclear
whether or when they will overcome these issues, as we are hitting the limits of avail-
able data. Even when they could be used successfully, the high cost of expertise, mate-
rials and energy does not necessarily allow for competitive pricing. The article [DV24]
covers the difficulties facing the Al industry in greater detail.
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4.6. Adversarial examples, adversarial stability and vulnerability

The issue of explainability worsens if we include problems of deliberate manipulation
of data. Adversarial examples were first popularized in [SZS*13], where the authors
showed that it is possible to perturb an image in a way that is imperceptible to humans,
but which fools a neural network into thinking an image of a panda shows an airliner.
The issue is rooted in the fact that realistic data lies on a moderately low-dimensional
subset of a much higher-dimensional space. Assume, for simplicity, that all data points
lie on a d-dimensional subspace V of RP, for instance V = {x e RP : x4+l = ... = xP = o).
Here, the x/ refer to the coordinate entries, not to be confused with the data points x;.
Clearly, the final D —d variables of the data should not contribute to the label y which
a learned model h(w,-) assigns to a data point x, since the data give us no information
about them. But, such an independence may not be learned: When we find w such that
h(w,x;) = y; for all data pairs (x;,y;), in general, we will find that the last D —d entries
of V,h(w, x) are non-zero! What we find there depends on the training algorithm, but
in general, d,;h(w, x) will be a random quantity of with expectation zero and positive
variance. Now, if D is much larger than d, then the D —d entries of even a small size
constitute a sizeable contribution to the vector V,i. When we are given a ‘realistic’

d+1 _ D

data point x —i.e., x =... = x"” = 0 — this does not matter. But: we can add a small

perturbation in these final coordinates which achieve a large change in
h(w, %) = h(w, x) + V h(w, x) - (X — x).

Thus, by moving x away from the set of sensible data even a little to %, we can cause
the model to behave quite differently. The main ingredient here is the high dimension
of the ambient space.

Of course, there are limitations: The setting above is heavily idealized, and there
are models which would zero out the final variables in the gradient. Additionally, to
cause the model to fail, we need to change x to a point £ such that the dot product
between the gradient V,h(w, x) and X —x is large, which means that we need to have an
idea about the inner workings of the model. If we were to choose X = x+ ¢N randomly
with, say, a standard Gaussian variable N, then the probability of selecting such a
good direction is vanishingly small if D is large.

Still, when the ‘surface’ on which real data lives becomes more complicated (for
instance, a manifold rather than a linear space) and a bit of stochastic noise is in-
volved, algorithms may not pick up directly on the low-dimensional intrinsic struc-
ture. Whenever this implicit dimension reduction fails, we are vulnerable to adversar-
ial attacks. And if our model is not interpretable, if we have no good understanding
on which basis it assigns labels, we may not realize when something is off.
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4.7. What does the ML community say?

While the machine learning community is well aware of its societal impact and its
challenges, its response has been far from uniform. Where prominent researchers like
Ali Rahimi and Geoffrey Hinton (one of the ‘godfathers of AI’, who left Google due to
concerns about AI) have urged caution, others like Yann LeCun (another ‘godfather’
and the Chief AI Scientist at Meta) have been more optimistic.

Community organizers currently appear to veer towards the latter camp. For the
first time, NeurIPS 2024 included a ‘high school track” where students could submit
essays that ‘highlight either demonstrated positive social impact or the potential for
positive social impact using machine learning.” Critical contributions were not so-
licited.

In view of the many ethical complications, the third and final ‘godfather” Yoshua
Bengio has called for ethics training for computer scientists and government regula-
tion, akin to the controls put in place for other sensitive industries such as planes and

pharmaceuticals.

4.8. The role of mathematics

Many older models in machine learning became popular after or in tandem with their
theoretical analysis. By contrast, deep learning has primarily been driven by its prac-
tical successes rather than grown out of a theoretical understanding. This has made
it hard to chart its limitations and guarantee its performance, leading to ‘alchemical’
practices which are only more recently giving way to rigorous ideas and scaling laws
[KMH"20]. It has been described as an art rather than a science. Naturally, in art,
there are no fundamental truths, and in their absence, opinions and debates flourish.

This is the role of the applied mathematician: To find fundamental guarantees and
fundamental barriers that cannot be overcome, to establish the power and limitation
of models. A proof cannot be argued with.

That is not to say that mathematical theory does not contribute to better models:
Two recent classes of generative Al models, Wasserstein-GANs and more recently dif-
fusion models (the technology underlying for instance the image generators DALL-E
and Stable Diffusion), build on rather complex mathematical foundations. Undeni-
ably though, there has been a gap between theory and practice, and, in the words of
Yann LeCun: ‘When empirical evidence clashes with a theory, it is the theory that is

wrong (or misinterpreted), not the universe.’

4.9. Go forth and learn

It may sound like I believe that the negatives of machine learning outweigh its bene-
fits. That is not the case. I desperately want a self-driving car, and despite the chal-

lenges, I can see the enormous promise of machine learning. In fact, I highly encour-
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age you to study machine learning: On the one hand, it is as fascinating and vibrant
a field of research as you can find today. More importantly, though, I believe literacy
in statistics and data-driven sciences is becoming crucial to the functioning of our so-
ciety, and the more we all understand about the mechanisms of machine learning, the
better.

Artificial Intelligence is a wonderfully powerful tool, and it would be foolish to
forsake it entirely. But we best remember that the intelligence we create may well be
less akin to the intelligence of the human mind and more to the inscrutable mind of
Lovecraft’s eldritch god Cthulhu.

5. How do I get started?

Take a class! Many departments, including the Department of Mathematics at Pitt
where I work, offer classes regularly or on a special topics basis.

My own point of entry into machine learning was the overview article [HH19],
which gives a nice basic introduction to neural networks specifically for mathemati-
cians. There is the excellent textbook [SSBD14], available for free as a pdf from Shai
Shalev-Schwartz’s website. It predates the deep learning boom however, and neural
networks are not covered in great detail. Other theoretical textbooks such as [PZ24]
are appearing (preprint available on arXiv) and books with a practical focus such as
[LBH15, BB23] are excellent sources for practical intuition and a broader overview.

As I tried to demonstrate, there are no ‘wrong’ classes to take: Even classes which
at first glance have very little connection to machine learning may prove useful in
the end. However, some classes are very directly useful and should not be missed:
The foundations of statistics, probability theory, linear algebra, optimization and nu-
merical mathematics are ubiquitous in machine learning, and they may be the most
directly useful. Similarly, without coding skills, machine learning is much like swim-
ming on dry land. The predominant languages in the ML community are Python and,
to a much lesser extent, R and Matlab. If you want to develop efficient libraries for
deep learning, a language with finer control such as C or C++ might be the way to
go. The large deep learning libraries PyTorch and TensorFlow are implemented at this
‘lower level’, but with a Python interface for easier access.

For a deeper understanding, there is very little that compares to a course in real
analysis, but this comes with an asterisk: Real Analysis is a class which teaches the
foundations of a way of thinking by examining the simplest case of a function in one
variable (at least for the first semester). Naturally, functions in one variable are often
not the most relevant case for applications. Like when learning a new language, this
foundation is not useful unless you build on it later. The earlier you take real analysis,
the more benefit you can get from the way of thinking it introduces you to.

Finally: Reach out about an undergraduate (or graduate) research project! Classes
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are great, but by necessity they tend to view a field in isolation. In practice, we rarely

have the benefit of focusing on a single area of knowledge, but we need to combine

our knowledge of statistics, our coding skills, our understanding of optimization and

numerical analysis... And the best way to obtain hands-on experience is a research

project or an internship. We need to be generalists, and we never know what we need

to know until we are faced with a specific problem that defies easy classification.
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