
Pittsburgh Interdisciplinary Mathematics Review
Volume 1, December 2024, Pages 59–70
https://doi.org/10.5195/pimr.2024.39

Shallow Neural Networks and Laplace’s Equation on the Half-Space
with Dirichlet Boundary Data

Malhar Vaishampayan

(Communicated by Leonardo Finzi)

Abstract

In this paper we investigate the ability of Shallow Neural Networks i.e. neural

networks with one hidden layer, to solve Laplace’s equation on the half space. We

are interested in answering the question if it is possible to fit the boundary value

using a neural network then is it possible to learn the solution to the PDE in the

entire region using the same network? Our analysis is done primarily in Barron

Spaces, which are function spaces designed to include neural networks with a

single hidden layer and infinite width. Our results indicate in general the solution

is not in the Barron space even if the boundary values are. However, the solution

can be approximated to ∼ ε2 accuracy with functions of a low Barron norm. We

implement a Physics Informed Neural Network with a custom loss function to

demonstrate some of the theoretical results shown before.

Keywords: Elliptic partial differential equations, Laplace’s equation, Shallow Neural
Networks, Barron spaces, Physics Informed Neural Networks

1. Introduction

In recent years, Neural Networks have gained huge popularity in scientific comput-
ing. One such area is numerical solutions of Partial Differential Equations (PDEs).
Oftentimes the PDEs we encounter in practical applications are too complicated to
solve analytically and we have to rely on numerical approximations of solutions. Fre-
quently, in scientific computing all we have are some observations and the physical
law the phenomenon satisfies in the form of a PDE. Thus, the boundary values also
have to be learnt from the data and are not known exactly. To this end we are inter-
ested in answering the question "If the boundary values can be learnt from the data and
the physical laws are known, can the solution also be learnt by the same neural network?".
In this article, we investigate the ability of Shallow Neural Networks (i.e. Neural Net-
works with one hidden layer) to represent the solution of Poisson’s equation −∆u = f

(where f is a given function) or the special case of Laplace’s equation −∆u = 0 on the
half-space.
In electrostatics, the electric potential satisfies Poisson’s equation (f is the charge den-
sity) and in the modelling of diffusion, u models the steady state concentration if f is

59

the ‘source’ (production and consumption) of the diffusing quantity. More generally,
the Laplace operator is the unique homogeneous and isotropic second order differ-
ential operator (i.e. the only operator for which (∆u)(x0 + Ox) = ∆

(
u(x0 + Ox)

)
for all

x0 ∈ Rn and all orthogonal matrices O). It therefore appears in all physical models
for phenomena are invariant under translations and rotations, for instance in the spa-
tial variables for the heat equation (diffusion) or the wave equation (vibration). It is
also the prototypical example for the class of second order elliptic partial differential
equations. We can therefore consider it as an import baseline.
In particular, we use the Rectified Linear Unit (ReLU) and its powers both as the ac-
tivation function of the neural network and as the boundary value. ReLU is a very
popular choice for the activation of neural networks, and we are primarily interested
in the case where it is easy to fit the boundary values, asking: Is it also easy to simul-
taneously solve the PDE?

2. Barron Spaces and Shallow Neural Networks

Barron Spaces are a function class which was introduced independently several times
in recent years [1, 4, 6], primarily for ReLU activation, based on the work of Andrew
Barron in 1993 [2]. Barron spaces comprise classes of functions that can be approx-
imated well by ReLu networks with a single hidden layer. A neural network with a
single hidden layer of width n and activation function σ : R→ R can be written as

fn(x) =
1
n

n∑
i=1

ai σ (wT
i x+ bi)

where the parameters ai ∈ R, wi ∈ Rd are the weights of the network and bi its biases.
For this article we use ReLUα(x) = (max{0,x})α as the activation function

fn(x) =
1
n

n∑
i=1

ai ReLUα(wT
i x+ bi).

Barron spaces are function classes designed to include the infinite width limits of
neural networks with a single hidden layer whose coefficients remain bounded. Let π
be a probability measure on R×Rd ×R. We denote fπ,α : Rd → R

fπ,α(x) = E(a,w,b)∼π
[
aσα(wT x+ b)

]
= E(a,w,b)∼π

[
aReLUα(wT x+ b)

]
.

The map π 7→ fπ,α is not unique – in fact, any measure π which is invariant under the
reflection map (a,w,b) 7→ (−a,w,b) represents the function fπ,α ≡ 0. We therefore make
the following definition: Let D ⊆ Rd be a subset. For a continuous function f : D→ R,

60

we define

∥f ∥Bα(D) = inf
{
E(a,w,b)∼π

[
|a|

(
|w|+ |b|

)α]
: f (x) = fπ,α(x) for all x ∈D

}
and

Bα(D) = {f ∈ C0(D) : ∥f ∥Bα(D) <∞}.

We call Bα the α-Barron space. This follows previous works which have considered
Barron spaces for powers of ReLU, such as [3, 5].

3. Laplace’s Equation with ReLUα Boundary Values

We consider the following equation: −∆u = 0 in R2
+,

u = ReLUα(x) on ∂R2
+

(1)

where R2
+ = R × (0,∞) and ∂R2

+ = R × {0}. For this article we will focus on the case
α = 2. In a future article we will consider the case where α ∈ N. In the same article we
will also consider the case α ∈ (0,1) < N, which is entirely different from when α is a
positive integer.

Theorem 1. A solution to (1) is u = uα where:

uα(x,y) =
(

1
π

arctan
(
x
y

)
+

1
2

)
(x2 − y2)−

xy

π
log

(
x2 + y2

)
if α = 2.

(a) α = 2 Contour (b) α = 2 Boundary

Figure 1: We visualize the solution of the PDE as contour plots and their boundary
values.

61

Proof. We can begin by verifying the harmonicity of the solution:

∂xu2(x,y) =
1
π

(
xπ − y + 2xarctan

(
x
y

)
− y log(x2 + y2)

)
∂xxu2(x,y) = 1 +

2
π

arctan
(
x
y

)
∂yu2(x,y) =

−1
π

(
x+ yπ+ 2y arctan

(
x
y

))
+ x log(x2 + y2)

∂yyu2(x,y) = −1− 2
π

arctan
(
x
y

)
.

Hence we have,

∆u2(x,y) = ∂xxu2 +∂yyu2 = 1 +
2
π

arctan
(
x
y

)
− 1− 2

π
arctan

(
x
y

)
= 0.

Next, we can verify the boundary condition:

lim
y→0+

u2(x,y) =
(1
π
π
2

sign(x) +
1
2

)
(x2 − 0)− 1

π
log(x2 + 0)x(0)

=
x2 + x2sign(x)

2
= ReLU2(x)

Thus, the harmonicity and boundary condition are verified and u2 is indeed a solution.

3.1. Non-Uniqueness

It is important to note that our solution is not unique. In fact, the solution to the
equation: −∆u = f in R2

+

u = g on ∂R2
+

(2)

is never unique for any f ,g. If u is a solution to (2) then so is u+h where h is a harmonic
function (i.e. ∆h = 0) on R2

+ with zero boundary values on ∂R2
+. For instance

h(x,y) = λ1 y +λ2xy +λ3

(
y3

6
−
x2y

2

)
+λ4 e

x sin(y) +λ5 e
−2x sin(2y)

For any coefficients λi ∈ R there is an infinite (and in fact infinite-dimensional) space
of solutions. The non-uniqueness of solution in this problem comes due to lack of a
boundary condition ‘at infinity’.
Since we are considering the upper half of the plane, the region extends to infinity
and we don’t get a second boundary. In physics, Laplace’s equation is used to model
electric fields where a problem could arise if we can only observe a small part of the
region we are considering.

62

3.2. Non-Barron Solution

We can ask: If the boundary data of the PDE is Barron, is the solution also Barron?
So, if we can easily learn the boundary condition, can we also learn the solution? This
is a now classical approach in the theory of PDEs: We phrase PDEs in terms of linear
‘operators’ between function spaces and use techniques from functional analysis, an
infinite-dimensional generalization of linear algebra. Knowing whether we can find
the solution in the space we want to use is of crucial importance.
We can show that our solution is not in B2(R2

+). First we begin by showing that if a
function of 2 variables is in B2(R2

+) then its second derivatives are bounded. Recall, a
B2 functions can be written as:

f (x,y) = E(a,w,b)∼π[aσ (wT x+ b)]

We consider the mixed derivative as a representative example.

∂f

∂x∂y
= E(a,w,b)∼π[aw1w2σ

′′(wT x+ b)]

≤ 2E(a,w,b)∼π[|a| · |w1| · |w2|]
≤ 2E(a,w,b)∼π[|a| · |w|2]

= 2 ||f (x,y)||B2

Thus if our function is in B2(R2
+), i.e. if the Barron norm of the function is bounded,

then the second derivative must be bounded. Now we can show the mixed second
derivative of our solution is not bounded making it not Barron.

∂xu2(x,y) =
1
π

(
xπ − y + 2xarctan

(
x
y

)
− y log(x2 + y2)

)
∂y∂xu2(x,y) =

−1
π

(
1 +

4x3

y3

y2

x2 + y2 + log(x2 + y2)−
2y2

x2 + y2

)
∂y∂xu2(0, y) = − 1

π
(1 + 0 + 2 log(y)− 2) .

At the origin y = 0, which makes the log term blow up making the mixed second
derivative unbounded. Thus, our solution is not Barron. However, we can approxi-
mate our solution by making the following change:

u2,ε =
(

1
π

arctan
(
x
y

)
+

1
2

)
(x2 − y2)−

xy

π
log(x2 + y2 + ε2)

for some 0 < ε < 1.
With the ε correction the log term no longer blows up at the origin. Also note that
∆u2,ε → 0 as ε → 0 pointwise. In a future article we will establish the exact Barron

63

norm of the approximation, which grows only logarithmically in ε, i.e. so slowly to
almost be considered merely a constant. Now, we can verify that u2,ε still satisfies the
boundary condition:

lim
y→0+

u2,ε =
(1
π
π
2

sign(x) +
1
2

)
x2 − 1

π
log(x2 + ε2)(0) = ReLU2(x)

Next, we can verify this is indeed a good approximation by computing the L∞ norm of
the difference on the upper half of the disk of radius R centered at the origin. Recall,
the L∞ norm of a continuous function is defined as ||f ||L∞(D) = sup{|f (x)| : x ∈D}. So,

||u2 −u2,ε||L∞(B+
R(0)) =

∥∥∥∥xyπ (log(x2 + y2 + ε2)− log(x2 + y2))
∥∥∥∥
L∞(B+

R(0))

=

∥∥∥∥∥∥xyπ log
(
1 +

ε2

x2 + y2

)∥∥∥∥∥∥
L∞(B+

R(0))

.

Since we are considering a disk it is easier to switch to polar co-ordinates:

||u2 −u2,ε||L∞(B+
R(0)) =

∥∥∥∥∥∥r2 sin(φ)cos(φ)
π

log
(
1 +

ε2

r2

)∥∥∥∥∥∥
L∞(B+

R(0))

= max
0≤r≤R

max
0≤φ≤π

∣∣∣∣∣∣r2 sin(2φ)
2π

log
(
1 +

ε2

r2

)∣∣∣∣∣∣
≤ max

0≤r≤R

(
r2 log

(
1 +

ε2

r2

))
To find the maximum we compute the r-derivative and set it equal to zero.

d
dr

(
r2 log

(
1 +

ε2

r2

))
= 2r log

(
1 +

ε2

r2

)
− 2ε2

r2 + ε2 r = 0

⇒ log
(
1 +

ε2

r2

)
=

ε2

r2 + ε2

Note that if r = 0, then the difference is zero, hence it can’t be the maximum, and if
r = R, then r2 log(1 + ε2/r2) ≈ R2 · ε2/R2 ≈ ε2 for small ε, since log′(1) = 1. Let z := r2

r2+ε2

and note that 0 < z < 1. Then

⇒ log
(1
z

)
= 1− z

⇒ log(z) = z − 1

64

We can solve this numerically to get z ≃ 0.137 and hence

z =
r2

r2 + ε2 = 0.137

⇒ r = ε

√
z

1− z
= ε

√
0.137

1− 0.137
≃ 0.4ε.

Finally, we have:

||u2 −u2,ε||L∞(B+
R(0)) = (0.4ε)2 log

(
1 +

ε2

(0.4ε)2

)
≤ ε2.

Thus, we have shown our error scales ∼ ε2. Our main message here is that even though
the solution is not in B2 it can still be well approximated by functions with a fairly
small B2-norm. This has favorable implications for the approximability of the func-
tion u2 by finite neural networks and on ‘learning’ the solution of the problem from a
small set of datapoints.

4. Physics Informed Neural Networks

We try to learn the solution of the Laplace’s Equation with ReLUα boundary using
Physics Informed Neural Networks(PINNs) on the region (x,y) ∈ [−1,1] × [0,1]. Since
our solution is non-unique we are also interested in knowing which solution the al-
gorithm learns. The boundary condition is only given on the portion of the boundary
where y = 0.
PINNs (first introduced in [7]) are a type of Neural Networks designed to solve super-
vised learning tasks while following any given physical laws described by PDEs. These
networks utilize the recent developments in automatic differentiation to differentiate
the neural network with respect to its input co-ordinates. For our task we consider a
fully connected neural network with one hidden layer that tries to minimize the loss
given by:

Lβ(θ) =
1
N

N∑
i=1

(
∆uθ(xi , yi)

)2
+

β

M

M∑
j=1

(
uθ(xj ,0)−ReLUα(xj)

)2
(3)

= Laplacian Loss + βBoundary Loss (4)

where θ represents the parameters (ai ,wi ,bi)
n
i=1 of the network and uθ is the network

itself. Here N and M are the number of points we consider in the interior and the
boundary respectively (generally N > M) and β is the weight given to the boundary
condition. This parameter can be modified to ensure the network does not ignore the
boundary condition or the PDE entirely.

65

4.1. Implementation

We implement a single layer neural network with 2000 parameters (i.e. a network
which has a width of 500 and a depth of 2) which are optimized using the Stochastic
Gradient Descent algorithm with a learning rate of 10−3 and a momentum of 0.99. The
implementation is done in Python using the PyTorch library, and we use the PyTorch
default parameter initialization. Since we are only looking at networks with a single
layer, it is possible to easily compute the Laplacian of the network with respect to
the inputs analytically without needing to use automatic differentiation. This is done
primarily to speed up the training process as it is computationally expensive to use au-
tomatic differentiation. However, this is in general not possible for more complicated
network architectures and we would have to rely on automatic differentiation.
We implement a custom loss function using the basic idea of (3) but with a few impor-
tant changes. Instead of using a fixed value for β throughout the training we make it
an adaptive parameter. We write the new loss function as:

Lµ,θ =
(1−µ)
N

N∑
i=1

(∆uθ(xi , yi))
2 +

µ

M

M∑
j=1

(
uθ(xj ,0)−ReLUα(xj)

)2

= (1−µ)Laplacian Loss +µBoundary Loss

Here, instead of only adjusting the weight given to the boundary condition we have:

µ =
Boundary Loss

Boundary Loss + Laplacian Loss
∈ (0,1)

1−µ =
Laplacian Loss

Boundary Loss + Laplacian Loss
∈ (0,1)

This parameter µ is calculated and updated every step of the training process, making
it adaptive. We use the losses from the previous time step for computational ease. It
helps us to balance the importance given to the Laplacian loss and the boundary loss
every step. If one of the two losses is much larger than the other, it will receive more
attention in the following time step, so we prioritize to decrease both contributions to
the loss simultaneously to comparable magnitude.
Figure 2 shows the results of the training. The Laplacian is near 0 at all points in the
region and the boundary values are also learnt near perfectly.

4.2. Implicit Bias

When a problem has multiple solutions, the preference of an algorithm towards learn-
ing a particular solution or set of solutions is known as the implicit bias of the algo-
rithm. Our results suggest that it is possible to solve equation (1) using PINNs, so we
are interested in understanding which solution the network learns.

66

(a) α = 2 PINN Simulation
Laplacian Contour Plot

(b) α = 2 PINN Simulation
Boundary Plot

Figure 2: We visualize the Laplacian of our PINN numerical solution as a contour plot
and the boundary values.

There is randomness inherent in the generation of the dataset, the initialization of the
neural network weights, and the batch selection for stochastic gradient estimates. We
therefore expect some variation between the solutions in different runs.

Figure 3: We visualize the countour plot of the solution learnt by PINNs for multiple
runs.

From Figure 3 and Figure 1, it is clear that the solution learnt by a PINN is generally
not the same as the one we presented in Theorem 1. The solution learnt by the PINN
often seems to be monotonically increasing in the x direction and varies considerably
less in the y direction than the explicit solution u2.
With ReLU2-activation, it is particularly easy to learn quadratic polynomials. To this
end we conjecture that our learnt solution can be represented by our solution from 1
as:

PINN Solution ≈ Analytic Solution +λ1y +λ2xy,

i.e. the two solutions mostly differ by a quadratic harmonic polynomial which van-
ishes on the boundary. The parameters λ1,λ2 ∈ R are the weights of linear harmonic
corrector and the quadratic harmonic corrector respectively. To study this conjectured
behavior in L2, we compute λ1y + λ2xy as the L2-orthogonal projection of the differ-

67

ence between the analytic and numerical solutions. The optimal values are calculated
as

λ1 =
⟨uP INN −uanalytic, y⟩L2((−1,1)×(0,1))

∥y∥2
L2((−1,1)×(0,1))

λ2 =
⟨uP INN −uanalytic,xy⟩L2((−1,1)×(0,1))

∥xy∥2
L2((−1,1)×(0,1))

since the functions y,xy are L2-orthogonal on the domain. We run the simulation 15
times to calculate the average values of λ1 and λ2 and their standard deviations. In
the table below we present the results for 5 such runs.

Simulation 1 2 3 4 5

λ1 0.4441 0.4451 0.5217 0.3163 0.3760

λ2 0.5798 0.5410 0.7717 0.5046 0.4168

||uP INN −uanalytic||L2 0.3322 0.3270 0.4074 0.2655 0.2718

||uP INN −uanalytic −λ1y||L2 0.2107 0.2018 0.2738 0.1924 0.1632

||uP INN −uanalytic −λ1y −λ2xy||L2 0.0824 0.0892 0.0912 0.0924 0.0847

Parameter Mean Std. Deviation

λ1 0.3576 0.1164

λ2 0.5784 0.0965

||uP INN −uanalytic||L2 0.3000 0.0578

||uP INN −uanalytic +λ1y||L2 0.2589 0.1612

||uP INN −uanalytic −λ1y −λ2xy||L2 0.0891 0.0040

We can clearly see there is some decrease in the L2 error when we use a linear corrector
however there is a major decrease when using a quadratic corrector. The same can be
seen through the contour plots in Figure 4.

(a) PINN - Analytical (b) PINN - Analytical with linear
harmonic corrector

(c) PINN - Analytical with
quadratic harmonic corrector

Figure 4: We visualize the contour plot of the difference between the learnt solution
and the analytic solution both with and without the correctors.

68

Unsurprisingly, the coefficient λ2 is positive in all runs: Like the boundary condi-
tion, also the PINN solution is monotonically increasing in x. Also the parameter λ1

appears to always be positive.

5. Conclusion

In this paper we investigated the ability of Shallow Neural Networks to solve the
Laplace’s equation with Dirichlet boundary data on the half-space. We were inter-
ested in knowing whether it is possible to use the same network to learn the boundary
data and the solution. Our results seem to indicate this in general is not possible.
However, we can approximate the boundary data and the solution to a great accuracy.
Since the solution is not unique, we were also interested in understanding which so-
lution the network learns. Our results seem to indicate when using a network with
ReLU2-activation, the learnt solution is well-approximated by the analytical solution
plus a harmonic quadratic corrector. We do not analyze the remainder term here.

6. Acknowledgements

The author gratefully acknowledges the financial support from the Department of
Mathematics at the University of Pittsburgh through a Painter Fellowship and from
the Fredrick Honors College at the University of Pittsburgh through the Chancellor’s
Undergraduate Research Fellowship. The author is also thankful for the mentoring of
Dr. Stephan Wojtowytsch under whose guidance this research was conducted.

References

[1] Francis Bach. Breaking the curse of dimensionality with convex neural networks.
Journal of Machine Learning Research, 18(19):1–53, 2017.

[2] Andrew R. Barron. Universal approximation bounds for superpositions of a sig-
moidal function. IEEE Transactions on Information Theory, 1993.

[3] Tjeerd Jan Heeringa, Len Spek, Felix L Schwenninger, and Christoph Brune. Em-
beddings between Barron spaces with higher-order activation functions. Applied
and Computational Harmonic Analysis, 73:101691, 2024.

[4] Chao Ma, Lei Wu, and Weinan E. A priori estimates of the population risk for
two-layer neural networks. arXiv preprint arXiv:1810.06397, 2018.

[5] Tong Mao, Jonathan W Siegel, and Jinchao Xu. Approximation rates for shallow
ReLUk neural networks on Sobolev spaces via the Radon transform. arXiv preprint
arXiv:2408.10996, 2024.

69

[6] Rahul Parhi and Robert D Nowak. Banach space representer theorems for neural
networks and ridge splines. Journal of Machine Learning Research, 22(43):1–40,
2021.

[7] M Raissi, P Perdikaris, and George Em Karniadakis. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems in-
volving nonlinear partial differential equations. Journal of Computational Physics,
2019.

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 12560

E-mail address: msv17@pitt.edu

©2024 Vaishampayan. This open access article is distributed under a Creative Commons Attribution 4.0 International License.
Pittsburgh Interdiscip. Math. Rev. is published by the University Library System of the University of Pittsburgh.

70

mailto:msv17@pitt.edu
https://creativecommons.org/licenses/by/4.0/
https://www.library.pitt.edu/
https://www.pitt.edu/

	Introduction
	Barron Spaces and Shallow Neural Networks
	Laplace's Equation with ReLU Boundary Values
	Non-Uniqueness
	Non-Barron Solution

	Physics Informed Neural Networks
	Implementation
	Implicit Bias

	Conclusion
	Acknowledgements

