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Abstract

A common approach to counting the number of ways to place identical items

into identical bins is by casework. In this article, an alternative approach is intro-

duced and robust mathematical formulas are established to calculate the number

of ways of placing arbitrary number of identical items into arbitrary number of

identical bins. Firstly, single closed formulas for the cases of two and three bins

are developed for arbitrary number of items. Secondly, a recursive formula for

more than three bins is derived for arbitrary number of items. This recursive for-

mula reduces the number of bins by one in each step until reaching the base case

of three bins for which the closed formula derived in this paper can be applied.

A Python program is implemented using the derived formulas that can count the

number of ways for arbitrary bins and items.

1. Introduction

The purpose of this article is to explore alternative methods to find the number of
ways to place items into bins, provided that both the items and bins are identical.
Combinations with repetition are used to count the number of ways to place identical
items into distinct bins. When both the items and bins are indistinguishable, the
counting problem is formulated as a partition into at most k parts problem; see, for
instance, Example 11 on page 454 in Rosen [7] (8th ed., 2019) or [1,4]. We will explore
this in Section 1.2. Our pursuit of finding formulas for this problem should not be
confused with the difficult partition of an integer.

The common method to count the number of ways to place identical items into
identical bins is by casework, which is tedious, time-consuming, and sometimes not
even feasible if the numbers of items and bins are large. It is well known that when
counting partitions, no simple closed formula exists. This motivates our study and we
shall present our formulas for this counting problem. In this introduction, we first
recall the classical method of stars and bars, then present our main result for the case
of identical bins through our alternative approach inspired by the method of stars and
bars.
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1.1. Combinations with repetition for distinguishable bins

Suppose you are hosting a birthday party. You want to know how many ways there are
to arrange 8 identical balloons on 3 different tables. How would you solve this? The
answer is: combinations with repetition.

Combinations with repetition, also called stars and bars, stones and sticks, or balls
and urns, is a method that can be used to find the number of ways to put indistinguish-
able balls into distinguishable bins, e.g., give identical pieces of candy to different
kids, and the like. William Feller, a famous mathematician in his well-known book [5]
on probability, made it a widely used approach.

Let us first explain what combinations with repetition is and use it to help the host
solve this problem.

Let us say that a star ∗ represents a balloon. We can arrange the 8 balloons in a row,
like this:

∗ ∗ ∗ ∗ ∗ ∗ ∗∗

We can think the distribution of the balloons among the 3 tables as inserting 2 dividers
called bars | into the row of balloons. For example, we put 2 balloons on the first table,
4 on the second, and 2 on the third. We can write this as (2,4,2) and illustrate it as:

∗ ∗ | ∗ ∗ ∗ ∗| ∗ ∗

The first table has the balloons to the left of the first divider, the second table has the
balloons between the first and the second dividers, and the third table has the balloons
to the right of the second divider. If we want a table to have zero balloons, e.g., (3,0,5),
we can depict it as:

∗ ∗ ∗|| ∗ ∗ ∗ ∗∗

So to determine the allotment of 8 balloons to 3 tables is the same as placing 2 dividers
into the row of 8 balloons. This is also equal to arranging 10 symbols, 8 stars and 2
bars. The number of ways to do this is

10!
8! · 2!

=
(
10
2

)
.

So the number of ways to arrange 8 balloons on 3 different tables is
(10

2
)
, which is 45.

In general, to distribute n items among k bins we need k − 1 dividers in a row of
n items. This is equal to positioning n stars and k − 1 bars, which can be done in the
following number of ways:

(n+ k − 1)!
n!(k − 1)!

=
(
n+ k − 1
k − 1

)
.
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1.2. Partitions into at most k parts

Now let us say that not only the balloons are the same, but also the tables are the same.
How many such arrangements are possible? Our situation is the same as counting the
number of ways to place n identical items into k identical bins. This is also the same
as counting the number of ways to partition a positive integer n into at most k parts,
which is denoted by pk(n). “At most k parts” corresponds to some of the bins being
possibly empty. A partition of n is a method of breaking down n into a sum of smaller,
positive integers. The order of the summands does not matter. For example, for n = 8
and k = 2, the partitions of 8 into at most 2 parts are 8,7 + 1,6 + 2,5 + 3,4 + 4 for a total
of 5 partitions. So p2(8) = 5.

In considering a specific case of pk(n), we will express the partition

n = n1 +n2 + · · ·+nk ,

where n1 ≥ n2 ≥ · · · ≥ nk, as (n1,n2, · · · ,nk). Then we can express the different partitions
of p2(8) as (8,0), (7,1), (6,2), (5,3), (4,4).

Table 1.1: Values for pk(n)

n
k

1 2 3 4 5 6 7 8 9

1 1
2 1 2
3 1 2 3
4 1 3 4 5
5 1 3 5 6 7
6 1 4 7 9 10 11
7 1 4 8 11 13 14 15
8 1 5 10 15 18 20 21 22
9 1 5 12 18 23 26 28 29 30

Note pk(n) = pn(n) when k ≥ n, i.e., all blank spaces are equal to the leftmost value that is closest to it.

There is also a more general partition of an integer n, p(n), that has no restrictions
except that the order of the summands does not matter. For example, for n = 5, the
partitions of 5 are 5,4 + 1,3 + 2,3 + 1 + 1,2 + 2 + 1,2 + 1 + 1 + 1,1 + 1 + 1 + 1 for a total of
7 partitions. So p(5) = 7.

1.3. New method for indistinguishable bins

When both the balloons and the tables are the same, you could use casework. For
example, the classical and recent books [2, 5–8] provide some examples by casework
where the number of items is small and the number of bins is only up to 3. In this

73



article, we will explore other methods to solve problems involving that both the items
and the bins, tables, etc. are indistinguishable. We also permit the bins to have 0 items.

A trivial case is n = 0 for which pk(0) = 1 for any integer k ≥ 1. Another trivial case
is p1(n) = 1 for any integer n ≥ 0.

We first state the main result, providing the closed and recursive formulas for
counting the number of ways to place identical items into identical bins.

Theorem (Main Result). Let pk(n) denote the total number of ways to place n indis-
tinguishable items into k indistinguishable bins for given nonnegative integers n and
k. Then
(1) For k = 2,

p2(n) =
⌊n

2

⌋
+ 1. (1.1)

(2) For k = 3,

p3(n) =

(n+2
2

)
−
⌈
n mod 3

2

⌉
× 2 +

⌊
n
2

⌋
× 3 + 5

3!
. (1.2)

(3) For k ≥ 4,

pk(n) =
⌊ nk ⌋∑
l=0

pk−1(n− kl). (1.3)

Here ⌊⌋ denotes the floor function, ⌈⌉ denotes the ceiling function, and a mod b de-
notes the remainder of the Euclidean division of a by b.

We will prove (1.1) in Section 2, (1.2) in Section 4, and (1.3) in Sections 5-6.

We note that the two formulas (1.1) and (1.2) are single closed formulas for two
and three identical bins respectively. The formula (1.3) is a recursive formula for more
than three identical bins. All three powerful formulas work for any given nonnegative
number n of bins. When k ≥ 4, using formula (1.3) reduces to the case of k − 1 bins,
then using (1.3) again reduces further to k − 2 bins, and we continue this way until it
reduces to 3 bins where the single closed formula (1.2) can be used.

Our approach to obtain these formulas roughly consists of two steps: (1) counting
the number of ways to place the identical items into distinct bins by the method of
stars and bars, and (2) subtracting the repeats when the bins are also identical. The
challenge is to find out a single formula that works for arbitrary numbers of items and
bins.

For the easy case of two identical bins, i.e., k = 2, we start with two real examples
with n = 8,9, then generalize to obtain the formula (1.1).

When we have three identical bins, it is not possible to use just casework to derive
a formula for an arbitrary number n. Instead, we first count the number of ways
to place identical items into 3 bins by the method of stars and bars if the bins are
distinct. Since the bins are in fact indistinguishable, there are repeats in the counting
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via the stars and bars method, thus we need to eliminate those repeats. In order to
show how to eliminate the repeats correctly, we use two real examples of eight and
nine items. Then we consider two general cases: the number of items n is (a) not a
multiple of three, and (b) a multiple of three. After deriving the formula for each of
the two cases, we combine them into one single closed formula (1.2) using the modulo
function a mod b.

For the case of more than three bins, we first use four bins to explain our idea. If
we place l items into the first bin for l = 0,1,2, . . . ,

⌊
n
4

⌋
, then we shall have n− 4l items

to place into the remaining three bins freely, which can be counted by the previous
formula (1.2) for k = 3. This idea can be generalized to the case of k > 4 as follows. If
we place l items into the first bin for l = 0,1,2, . . . ,

⌊
n
k

⌋
, then we shall have n− kl items

to place into the remaining k−1 bins freely, which leads to the recursive formula (1.3).
In the rest of the article, we consider the case of two bins in Section 2, a recurrence

relation for pk(n) in Section 3, the case of three bins in Section 4, the case of four bins
in Section 5, the general case of k bins with k > 4 in Section 6, an application in Section
7, and a Python program for arbitrary values of bins and items in Section 8.

2. Two Identical Bins: k = 2

In this section, we consider the easy case of two bins, i.e., k = 2. Let us start with two
examples. Consider the first example:
Example 2.1: Let us consider our birthday party again. Suppose this time you want to
arrange 8 identical balloons on 2 identical tables. How many ways are there?
Solution: We can solve this by casework. Since the tables are indistinguishable, only
the number of balloons on each table matters. We list out the possibilities:

(8,0), (7,1), (6,2), (5,3), (4,4).

There are a total of 5 possibilities.
The second example is the following:

Example 2.2: If you want to put 9 identical balloons on 2 identical tables, how many
ways are there?
Solution: Solving this problem using casework gives us the possibilities:

(9,0), (8,1), (7,2), (6,3), (5,4).

There are in total 5 possibilities.
Now let us use our new approach to consider these two examples. For the first

example, if the balloons are identical and the tables are distinguishable, then the total
number of ways is

(8+2−1
2−1

)
=

(9
1
)

= 9. But since both are indistinguishable, we need
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to eliminate the repeats. For this purpose, first we have to find the number of ways
to arrange the balloons such that both tables have the same number. There is one
possibility where both tables get the same number of balloons. Now we have to find
the ways that each table gets a distinct number of of balloons. We have 9−1 = 8 ways.
But since the tables are also identical, we need to divide by the number of ways we can
order them, which is 2! = 2. So the total number of ways is 8

2! = 4. Now we need to add
the one possibility in which both tables have the same number of balloons because we
subtracted it. Therefore, the total number of ways to arrange 8 identical balloons on 2
identical tables is 4 + 1 = 5.

Using the same logic for the second example, if the tables are distinguishable but
the balloons are not, there are a total of

(9+2−1
2−1

)
=

(10
1
)

= 10 ways. But since both are
identical, we need to remove the repeats. Here, all the possibilities are arrangements
of which each table has a distinct number of balloons. We have 10 ways. However,
since the tables are also identical, we need to divide by the number of ways we can
order them, which is 2! = 2. Therefore, the total number of ways to arrange 9 identical
balloons on 2 identical tables is 10

2! = 5.
We now generalize the above examples to general n balloons on 2 tables. If the

tables are distinguishable, but the balloons are not, there are a total of(
n+ 2− 1

2− 1

)
=

(
n+ 1

1

)
= n+ 1

ways. But since both the balloons and tables are indistinguishable, we need to subtract
the repeats. We will consider two cases:

(a) The first case is that n is a multiple of 2 as in Example 2.1. There is one possi-
bility where both tables get the same number of balloons. There remain, as we noticed
before, n+1−1 = n different possibilities. Each possibility has 2 orderings. So the total
number of ways that each identical table gets a distinct number of balloons is n

2! = n
2 .

Hence, the total number of ways to arrange n identical balloons on 2 identical tables
is n

2 + 1.
(b) The second case is that n is not a multiple of 2 as in Example 2.2. Here, all the

possibilities are arrangements of which each table has a distinct number of balloons.
We have n+ 1 ways. However, since the tables are identical, we need to divide by the
number of ways we can order them, which is 2! = 2. Therefore, the total number of
ways to arrange n balloons on 2 tables is n+1

2 = n−1
2 + 1.

Combining these two cases together, we can get the single formula p2(k) =
⌊
n
2

⌋
+ 1

which is (1.1).
Below we give another proof using the generalized pigeonhole principle. First, we

introduce a lemma:

Lemma 2.1. For any k ≥ 0,
(1) if n = 2k, then

⌈
n
2

⌉
=

⌊
n
2

⌋
.
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(2) if n = 2k + 1, then
⌈
n
2

⌉
=

⌊
n
2

⌋
+ 1.

Proof. (1)
⌈
n
2

⌉
=

⌈
2k
2

⌉
= ⌈k⌉ = k =

⌊
2k
2

⌋
=

⌊
n
2

⌋
.

(2)
⌈
n
2

⌉
=

⌈
2k+1

2

⌉
=

⌈
k + 1

2

⌉
= k + 1 =

⌊
k + 1

2

⌋
+ 1 =

⌊
2k+1

2

⌋
+ 1 =

⌊
n
2

⌋
+ 1.

Now we can prove Equation (1.1):

Proof of Equation (1.1). Since there are two bins, by the generalized pigeonhole prin-
ciple, one of the bins must have at least ⌈n2⌉ items. Therefore,

p2(n) =
∣∣∣∣∣{(⌈n2⌉

,n−
⌈n

2

⌉)
,
(⌈n

2

⌉
+ 1,n−

⌈n
2

⌉
− 1

)
, · · · , (n,0)

}∣∣∣∣∣ .
There are two cases:
Case 1: n is even. Then n = 2k,k ∈ Z.
Then

p2(n) =

∣∣∣∣∣∣
{(⌈

2k
2

⌉
,n−

⌈
2k
2

⌉)
,

(⌈
2k
2

⌉
+ 1,n−

⌈
2k
2

⌉
− 1

)
, · · · , (n,0)

}∣∣∣∣∣∣
= |{(k,n− k) , (k + 1,n− k − 1) , · · · , (n,0)}|
= n− k + 1

= 2k − k + 1 = k + 1

=
⌊n

2

⌋
+ 1 by Lemma 2.1 (1).

Case 2: n is odd. Then n = 2k + 1, k ∈ Z.
Then

p2(n) =

∣∣∣∣∣∣
{(⌈

2k + 1
2

⌉
,n−

⌈
2k + 1

2

⌉)
,

(⌈
2k + 1

2

⌉
+ 1,n−

⌈
2k + 1

2

⌉
− 1

)
, · · · , (n,0)

}∣∣∣∣∣∣
= |{(k + 1,n− k − 1) , (k + 2,n− k − 2) , · · · , (n,0)}|
= n− k
= 2k + 1− k = k + 1

=
⌊n

2

⌋
+ 1 by Lemma 2.1 (2).

Thus, p2(n) =
⌊
n
2

⌋
+ 1.

3. Recurrence relation for pk(n)

We will use the following lemma in the section below:

Lemma 3.1. pk(n) = pk(n− k) + pk−1(n).
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Proof. We will prove this relation by showing both sides count the same thing by
counting two different ways. The left side of the equation is the number of ways to
place n items into k bins.

The right side counts the same thing as follows:
(1) The first term is the total number of ways to place n items such that no bins are
empty, namely, each bin has at least one item. Thus we can place n − k items into k

bins.
(2) The second term is the total number of ways such that at least one bin is empty.
Thus we can place n items into k − 1 bins.

Thus, the relation holds.

4. Three Identical Bins: k = 3

In this section we consider three identical bins. We also start with two special exam-
ples.
Example 4.1: Let us consider our birthday party again. Suppose this time you want to
arrange 8 identical balloons on 3 identical tables. How many ways are there?
Solution: Using casework we see that there are 10 possibilities:

(8,0,0), (7,1,0), (6,2,0), (6,1,1), (5,3,0), (5,2,1), (4,4,0), (4,3,1), (4,2,2), (3,3,2).

Example 4.2: If you want to put 9 identical balloons on 3 identical tables, how many
ways are there?
Solution: Solving by casework, we see that there are 12 possibilities:

(9,0,0), (8,1,0), (7,2,0), (7,1,1), (6,3,0), (6,2,1),

(5,4,0), (5,3,1), (5,2,2), (4,4,1), (4,3,2), (3,3,3).

When the number of items is large, it is difficult to count the number of ways by
casework. Thus a new approach is needed.

4.1. Method 1: Using combinations with repetition and eliminating repeats

Now we present our approach.
For Example 4.1, if the balloons are identical and the tables are distinguishable,

then the total number of ways is
(8+3−1

3−1
)

=
(10

2
)

= 45. But since both are indistinguish-
able, we need to eliminate the repeats, of which there are two kinds: exactly two tables
have the same number, and no tables have the same number of balloons. We do the
following:
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Step 1: Count how many ways to arrange the balloons such that two tables have the
same number. There are 5 different possibilities: (0,0,8), (1,1,6), (2,2,4), (3,3,2), (4,4,0),
each of which has 3!

2! = 3 orderings. So the total number of ways is 3× 5 = 15.

Step 2: Count the number of ways to arrange the balloons such that no table have the
same number. We have 45 − 15 = 30 ways. But since the tables are also identical, we
need to divide by the number of ways we can order them, which is 3! = 6. So the total
number of ways is 30

3! = 5.

Step 3: Now we need to add the 5 different possibilities in which exactly two tables
have the same number of balloons, because we subtracted them. Therefore, the total
number of ways to arrange 8 identical balloons on 3 identical tables is 5 + 5 = 10.

For Example 4.2, we can use the same logic as in Example 4.1. If the tables are
distinguishable but the tables are not, there are a total of

(9+3−1
3−1

)
=

(11
2
)

= 55. But since
both are identical, we need to take off the repeats, of which there are three kinds: all
three tables have the same number, exactly two tables have the same number, and no
tables have the same number of balloons. We do the following:

Step 1: For this problem, we have a possibility where all three tables get the same
number of balloons. There is only one way, that is, (3,3,3).

Step 2: Count how many ways to arrange the balloons such that exactly two tables have
the same number. There are 4 different ways to arrange the balloons such that only
two tables have the same number (note that (3,3,3) does not belong to this category
since all three tables have the same number). Each of these possibilities has 3!

2! = 3
orderings. So the total number of ways is 3× 4 = 12.

Step 3: Count the number of ways to arrange the balloons such that no table have
the same number. We have 55 − 12 = 43, and there is only one way where all three
tables get the same number of balloons. So this leaves us with all the ways that the
possibilities have all three numbers distinct, which is 43− 1 = 42. But since the tables
are also indistinguishable, we need to divide by the number of ways we can order
them, which is 3! = 6. Therefore the total number of ways to arrange the balloons
such that each table gets a different number is 42

3! = 7.

Step 4: Now we need to add the 4 different possibilities in which exactly two tables
have the same number of balloons and the one possibility where all three tables get
the same number since we subtracted them. Thus, the total number of ways to arrange
9 identical balloons on 3 identical tables is 7 + 4 + 1 = 12.

We now can generalize the idea to n balloons on 3 tables. We will consider two
cases: n is or is not a multiple of 3, that is, n ≡ 0 (mod 3) or n ≡ 1,2 (mod 3).

The first case is that n is not a multiple of 3 as in Example 4.1. Let us say n is the
number of balloons.
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Lemma 4.1. For n ≡ 1,2 (mod 3),

p3(n) =

(n+2
2

)
−
(⌊

n
2

⌋
+ 1

)
× 3

3!
+
⌊n

2

⌋
+ 1.

Proof. If the tables are distinguishable, but the balloons are not, then using the for-
mula for stars and bars, we get

(n+3−1
3−1

)
=

(n+2
2

)
. But since both the balloons and tables

are indistinguishable, we need to subtract the repeats, of which there are two kinds:
exactly two tables have the same number, and no tables have the same number of
balloons. We do the following:

Step 1: Count how many ways to arrange the balloons such that two tables have the

same number of balloons. There are
⌊
n
2

⌋
+ 1 different possibilities. Each of these has 3

orderings since there are 3 ways to place the last balloon. So the total number of ways
is (

⌊
n
2

⌋
+ 1)× 3.

Step 2: Count the number of ways to arrange the balloons such that no tables have the
same number. We have (

n+ 2
2

)
−
(⌊n

2

⌋
+ 1

)
× 3

ways. But since the tables are also identical, we need to divide by the number of
ways we can order them, which is 3! = 6. So the total number of ways to arrange the
identical balloons on identical tables such that each table has a different number is(n+2

2
)
−
(⌊

n
2

⌋
+ 1

)
× 3

3!
.

Step 3: Now we need to add the
⌊
n
2

⌋
+ 1 possibilities in which exactly two tables have

the same number of balloons because we subtracted them.

Therefore, the total number of ways to arrange n identical balloons on 3 identical
tables is given by

p3(n) =

(n+2
2

)
−
(⌊

n
2

⌋
+ 1

)
× 3

3!
+
⌊n

2

⌋
+ 1

when n ≡ 1,2 (mod 3).

The second case is that n is a multiple of 3.

Lemma 4.2. For n ≡ 0 (mod 3),

p3(n) =

(n+2
2

)
−
⌊
n
2

⌋
× 3− 1

3!
+
⌊n

2

⌋
+ 1.

Proof. We can use the same logic as in the first case. If the tables are distinguishable,
but the balloons are not, there are a total of

(n+3−1
3−1

)
=

(n+2
2

)
. Since both the balloons
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and tables are indistinguishable, we need to subtract the repeats, of which there are
three kinds: all three tables have the same number, exactly two tables have the same
number, and no tables have the same number of balloons. We do the following:

Step 1: Since n is a multiple of 3, we also have a possibility where all three tables get
the same number of balloons. There is only one ordering for this case.

Step 2: Count how many ways to arrange the balloons such that exactly two tables

have the same number of balloons. There are, as we noticed before,
⌊
n
2

⌋
different pos-

sibilities. Each possibility has 3 orderings. So the total number of ways is
⌊
n
2

⌋
× 3.

Step 3: Subtracting the sum of Steps 1 and 2 from
(n+2

2
)

leaves us with all the ways
with all three numbers distinct, and the number of ways is(

n+ 2
2

)
−
⌊n

2

⌋
× 3− 1.

But since the tables are also indistinguishable, we need to divide by the number of
ways we can order them, which is 3! = 6. So the total number of ways to arrange the
identical balloons on identical tables such that no tables have the same number of
balloons is (n+2

2
)
−
⌊
n
2

⌋
× 3− 1

3!
.

Step 4: Now we need to add the
⌊
n
2

⌋
possibilities in which exactly two tables have the

same number of balloons and the one possibility where all three tables get the same
number since we subtracted them. Therefore, the total number of ways to arrange n

identical balloons on 3 identical tables is

p3(n) =

(n+2
2

)
−
⌊
n
2

⌋
× 3− 1

3!
+
⌊n

2

⌋
+ 1

when n ≡ 0 (mod 3).

Table 4.1 below illustrates the proofs of the two lemmas.
We can combine Lemmas 4.1 and 4.2 into one single formula:

p3(n) =

(n+2
2

)
−
(⌊

n
2

⌋
+
⌈
n mod 3

2

⌉)
× 3 +

⌈
n mod 3

2

⌉
− 1

3!
+
⌊n

2

⌋
+ 1.

Simplifying, we get

p3(n) =

(n+2
2

)
−
⌈
n mod 3

2

⌉
× 2 +

⌊
n
2

⌋
× 3 + 5

3!
,
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Table 4.1: Obtaining a formula for p3(n):
number of ways to place n indistinguishable balloons on 3 indistinguishable tables

k = 3 tables n ≡ 0 (mod 3) n ≡ 1,2 (mod 3)

Distinguishable
Tables

(n+3−1
3−1

)
=

(n+2
2

) (n+3−1
3−1

)
=

(n+2
2

)

Indistinguishable
All three tables have
the same number of
balloons

1 Not feasible

Tables Exactly two of the
tables have the same
number of balloons

⌊
n
2

⌋
+ 1− 1 =

⌊
n
2

⌋
p2(n) =

⌊
n
2

⌋
+ 1

No tables have the
same number of bal-
loons

(n+2
2 )−1−⌊ n2 ⌋×3

3!
(n+2

2 )−(⌊ n2 ⌋+1)×3
3!

Total number of
ways

(n+2
2 )−⌊ n2 ⌋×3−1

3! +
⌊
n
2

⌋
+1 (n+2

2 )−(⌊ n2 ⌋+1)×3
3! +

⌊
n
2

⌋
+ 1

which is the formula (1.2).

4.2. Method 2: Using recurrence relation 3.1

Another approach is to use the recurrence relation 3.1 from Section 3:

pk(n) = pk(n− k) + pk−1(n), n ≥ k.

For k = 3,
p3(n) = p3(n− 3) + p2(n), n ≥ 3. (4.1)

So we have

p3(n) = p3(n− 3) + p2(n)

= p3(A) + p2(n), A ≥ 0, n = A+ 3,

=



1 + p2(n), A = 0,

1 + p2(n), A = 1,

2 + p2(n), A = 2,

p3(B) + p2(A) + p2(n), A = 3, B = A− 3.

We also have
p3(0) = 1, p3(1) = 1, p3(2) = 2.
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Let us write out what p3(n) is using (4.1) for the first few values of n ≥ 3:

p3(n) =



1 + p2(3), n = 3,

1 + p2(4), n = 4,

2 + p2(5), n = 5,

1 + p2(3) + p2(6), n = 6,

1 + p2(4) + p2(7), n = 7,

2 + p2(5) + p2(8), n = 8,

1 + p2(3) + p2(6) + p2(9), n = 9,

1 + p2(4) + p2(7) + p2(10), n = 10,

2 + p2(5) + p2(8) + p2(11), n = 11,

1 + p2(3) + p2(6) + p2(9) + p2(12), n = 12,

1 + p2(4) + p2(7) + p2(10) + p2(13), n = 13,

2 + p2(5) + p2(8) + p2(11) + p2(14), n = 14.

Using an inductive argument, we can obtain another formula:

p3(n) = p3(n mod 3) +
m∑
i=1

p2(3i + l), (4.2)

where n = 3m+ l, l = 0,1,2, m =
⌊
n
3

⌋
.

4.3. An identity for p3(n)

Because we count the same thing in Sections 4.1 and 4.2, we have established the
following identity:(n+2

2
)
−
⌈
n mod 3

2

⌉
× 2 +

⌊
n
2

⌋
× 3 + 5

3!
= p3(n mod 3) +

m∑
i=1

p2(3i + l). (4.3)

5. Four Identical Bins: k = 4

In this section we consider the case of four identical bins. As an example, let us con-
tinue on our birthday party.
Example 5.1: Suppose there are 9 indistinguishable balloons and 4 indistinguishable
tables. How many ways to arrange them?
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Solution: The casework shows 18 possibilities:

(0,9,0,0), (0,8,1,0), (0,7,2,0), (0,7,1,1), (0,6,3,0), (0,6,2,1),

(0,5,4,0), (0,5,3,1), (0,5,2,2), (0,4,4,1), (0,4,3,2), (0,3,3,3),

(1,6,1,1), (1,5,2,1), (1,4,3,1), (1,4,2,2), (1,3,3,2), (2,3,2,2).

One can imagine that if the number of balloons is large, the casework takes forever.
Thus we need an efficient way to accomplish it.

We now introduce our approach. We have to decide how many balloons to put on
the first table. Once this is decided, the problem reduces to the 3-table problem in
Section 4.
Case 1: If the first table gets zero balloons, we have 9 balloons left to put on the re-
maining 3 tables, which we know there are 12 arrangements.
Case 2: If the first table gets one balloon, we have 8 balloons left to put on the re-
maining 3 tables. This leads to the arrangement of 8 balloons on 3 tables which we
discussed earlier. However, we now cannot have a table with zero balloons because
otherwise it will repeat the case when the first table gets zero balloons, which means
that each of the three tables should have at least one balloon. So let us first put one
balloon on each of the rest three tables. We have 9 − 1 − 1 × 3 = 9 − 4 = 5 balloons
left which we can put on the 3 tables without restrictions. There are 5 ways using the
formula (1.2).
Case 3: If the first table gets two balloons, we have 7 balloons left to put on the remain-
ing 3 tables. But now we cannot have a table with 0 or 1 balloon because otherwise it
will repeat the cases when the first table gets 0 or 1 balloon, which means that each of
the three tables should have at least two balloons. Let us first put 2 balloons on each
of the remaining 3 tables. So we have 9−2−2×3 = 9−8 = 1 balloon left, which we can
put on 3 tables one way using the formula (1.2).
Case 4: If the first table gets three balloons, we have 6 balloons left to put on the
remaining 3 tables. But now we cannot have a table with 0, 1 or 2 balloons because
otherwise it will repeat the cases when the first table gets 0, 1 or 2 balloons, which
means that each of the three tables should have at least three balloons. Since we have
only 6 balloons for the three tables, this is impossible, which means we should stop
when the first table gets 2 balloons.

By adding these four cases, we get 12 + 5 + 1 = 18 ways to distribute 9 balloons on
4 tables.

We now generalize the approach to n balloons on 4 tables. Let us say n is the total
number of balloons and l is the number of balloons on the first of the four tables.
Then, as in the above argument, there are n− l balloons for the remaining 3 tables. To
avoid repeats, each of the 3 tables cannot have 0,1, · · · , or l − 1 balloons, which means
each table should have at least l balloons. After we put l balloons on the 3 tables, we
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have n − l − 3l = n − 4l balloons left to put on the three tables randomly. Thus it has
p3(n−4l) ways using the formula (1.2). This can be explained in more detail as follows.

If l = 0, then the number of ways is p3(n− l − 3l) = p3(n− 4l) = p3(n).

If l = 1, then the number of ways is p3(n− l − 3l) = p3(n− 4l) = p3(n− 4).

If l = 2, then the number of ways is p3(n− l − 3l) = p3(n− 4l) = p3(n− 8).

We can continue this way until the maximum number is reached for l, explained as
follows. First, n−4l has to be bigger than or equal to 0 since it cannot be negative, i.e.,
n− 4l ≥ 0. That means l ≤ n

4 . The biggest integer l that is less than or equal to n
4 is

⌊
n
4

⌋
.

So the total number of ways to put n identical balloons on 4 identical tables is

⌊ n4⌋∑
l=0

p3(n− 4l),

which is the formula (1.3) for k = 4.

6. More Identical Bins: k > 4

In this section we generalize the procedure in the previous section for four bins to
more bins.

Let us say n is the number of identical balloons, k is the number of identical tables,
and l is the number of balloons on the first table. Then we have n− l − (k − 1)l = n− kl
balloons left to put on the remaining k − 1 tables randomly, thus the number of ways
of configurations is pk−1(n − kl). Here l starts from 0, then 1, and continue until

⌊
n
k

⌋
since n− kl has to be nonnegative.

We need to add them up to arrange n identical balloons on k identical tables.
Therefore, the total number of ways to put n balloons on k tables when k ≥ 4 is

⌊ nk ⌋∑
l=0

pk−1(n− kl),

which is the formula (1.3) for general k > 4. We remark that the formula (1.3) is a
recursive formula, and it works for any integer n > 0 and any integer k ≥ 4, via the
single closed formula (1.2) for base case k = 3.

7. Applications

The general formula (1.3) we developed above can come very handy when either n or
k or both are large, since casework would not be efficient. We illustrate this in the
following two examples.
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Example 7.1: In [7], Example 11 on page 454 counts the case of 6 identical books into
4 identical boxes. The author uses casework to conclude that there are 9 ways to pack
the books into the boxes. We can use our formula (1.3) for k = 4 and the closed formula
(1.2) for k = 3 to obtain the same answer easily as the following:

p4(6) =
⌊ 6

4⌋∑
l=0

p4−1(6− 4l)

=
1∑

l=0

p3(6− 4l)

= p3(6) + p3(2) = 7 + 2 = 9.

As aforementioned, when the numbers of items and bins are large, it is very diffi-
cult to count by casework, but our formulas are robust.
Example 7.2: An online store has 20 identical books to pack. They have 4 identical
boxes. How many ways can they distribute the books to the boxes?
Solution: Using the formula (1.3) for k = 4 and then the formula (1.2) for k = 3, we
have

p4(20) =
⌊ 20

4 ⌋∑
l=0

p4−1(20− 4l)

=
5∑

l=0

p3(20− 4l)

= p3(20) + p3(16) + p3(12) + p3(8) + p3(4) + p3(5)

= 44 + 30 + 19 + 10 + 4 + 1 = 108.

Therefore, there are 108 ways to distribute 20 identical books to 4 identical boxes.
Again one can imagine that finding out correctly the number of ways by casework

for the 108 cases in this example is not easy, but the above calculation using the for-
mula (1.3) and then the formula (1.2) is effective.

For even larger n and k, we can use a computer program to find the number of
ways based on the recursive formula (1.2); see the next section for an example.

8. Python Program

In this section, a Python program is presented that calculates the number of ways for
arbitrary values of n and k. This program contains two functions (one original func-
tion and the main function) and uses recursion. The function starsBars, calculates the
number of ways for three bins or less.
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’’’

The user gives the values for n and k.

n: nonnegative integer number of identical ITEMS

k: nonnegative integer number of identical BINS

’’’

import math as m

def starsBars(n, k):

if k == 0 or k == 1: #0 or 1 identical BINS

return 1

if k == 2: #2 identical BINS

result = m.floor(n / 2) + 1

return result

elif k == 3: #3 identical BINS

result = (m.comb(n + 2, 2) - (m.floor(n / 2)

+ m.ceil((n % 3) / 2)) * 3

+ m.ceil((n % 3) / 2) - 1) / m.factorial(3)

+ m.floor(n / 2) + 1

return result

elif k >= 4: #4 or more identical BINS

sum = 0

for l in range(0, m.floor(n / k) + 1):

#Recursive formula

sum += starsBars(n - (k * l), k - 1)

return sum

def main():

n = int(input(’Enter number of identical ITEMS: ’))

k = int(input(’Enter number of identical BINS: ’))

print(’Number of ways to distribute n identical items

to k different bins:’, int(starsBars(n, k)))

if __name__ == ’__main__’:

main()

Consider the case of n = 100 identical items and k = 20 identical bins. We can use
the above Python program to obtain that the number of ways is 97132873.
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Enter number of identical ITEMS: 100

Enter number of identical BINS: 20

Number of ways to distribute n identical items

to k different bins: 97132873
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