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Abstract

We say that a graph Γ = (V ,E) with vertices in a k–dimensional Euclidean space

is an ε–robust distance graph with threshold τ if any two vertices v,w in V are

adjacent if and only if ∥v − w∥2 ≤ (1 + ε)−1τ and are not adjacent if and only if

∥v −w∥2 > (1 + ε)τ . We show that there are universal constants C′ , c′ , c > 0 with

the following property. For k ≥ C′d logn, asymptotically almost every d–regular

graph on n vertices is isomorphic to a c√
d

–robust distance graph in Rk , whereas

for k ≤ c′d logn
logd , a.a.e d–regular graph on n vertices cannot be represented as an

c√
d

–robust distance graph.

1. Introduction

In this paper, we adopt the following definition. A graph Γ = (V ,E) with vertices in Rk

is a distance graph (or a geometric graph1) with a threshold τ if for any v,w in V , the
vertices are adjacent if and only if ∥v −w∥2 ≤ τ .

Let N be a very large integer, and RN be a feature space (for example, images or
pieces of text). We further suppose that there exists a map

Sim : RN ×RN → {0,1},

which for every pair of data points p1,p2 ∈ RN returns 1 if p1,p2 are similar, and 0
otherwise. As a concrete example, consider a professional network in which each per-
son’s account is represented by a vector in RN . If for two data points p1,p2 ∈ RN

we have Sim(p1,p2) = 1 then the two persons are considered to have similar profes-
sional interests. The network algorithm can use the information for advertisement,
suggesting new contacts, etc. As another example, consider a set of documents (for
example, academic papers or homework assignments) represented as vectors in RN .
If Sim(doc1,doc2) = 1 then the documents are considered similar, which may be an
indication of plagiarism.

1Note that there exist other definitions of geometric graphs in the literature. In particular, k nearest
neighbors graphs, planar graphs, dot product graphs are considered to be geometric graphs as well.
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Often, the map Sim is either not explicitly defined or takes too much time to com-
pute (for example, Sim can be an abstraction of an expert human). A standard ap-
proach in dealing with large feature spaces is to construct a dimension reduction map
f : RN → Rk (with k much smaller than N ) and evaluate similarities of data points by
comparing the Euclidean distance between the corresponding “reduced” feature vec-
tors with a threshold τ . Let k be an integer much smaller than N , and f : RN → Rk be a
linear or non-linear dimension reduction map into a “reduced” feature space Rk. For a
finite set of data points D in RN , consider a distance graph Γ with vertex set V := f (D)
and the edge set

E :=
{
{f (p1), f (p2)} : ∥f (p1)− f (p2)∥2 ≤ τ

}
.

The constructed dimension reduction map is good if for typical configurations D of
data points in RN it correctly identifies the similarity network i.e

f (p) and f (p′) are adjacent in Γ if and only if Sim(p,p′) = 1, for all p,p′ ∈D. (1)

Existence or non-existence of a good quality dimension reduction map f obviously
depends on the structure of the typical configurations D of data points, and is neces-
sarily problem-specific. At the same time, there are fundamental information-theoretic
limits on how good a mapping f can be, determined by the dimensions N and k and
the vertex degrees and size of considered similarity networks.

To make the problem mathematically tractable, we have to define an explicit model
of a “typical” similarity network in RN .

Assumption. We assume that a similarity network in RN has n vertices and is d–
regular i.e the degree of every vertex is d. Further, we suppose that all topologies
(isomorphism classes) of n–vertex d–regular graphs are equally likely to occur in a
typical similarity network, i.e the network can be viewed as a uniform random d–
regular graph.

As a necessary condition for the existence of a good quality reduction map f into
Rk in this setting is that 1− o(1) fraction of d–regular graphs G on n vertices have the
property that there is a distance graph Γ in Rk isomorphic to G. Thus, the information-
theoretic problem of the existence of a good mapping can be directly related to the
following question:

Problem 1.1. Given parameters n,d,k, does the set of all d–regular distance graph on n

vertices in Rk comprise 1− o(1) fraction of all d–regular graphs on n vertices?

The last problem has been addressed in the literature; in particular, it follows from
a result in [5] that under the assumption k ≥ Cd logn (for a large universal constant
C > 0), the answer is positive i.e asymptotically almost all d–regular graphs are rep-
resentable as Euclidean distance graphs in Rk. On the other hand, it follows from [9]
that for k ≤ cd, the number of Euclidean distance graphs in Rk is asymptotically in-
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finitely small compared to the total number of labeled d–regular graphs on n vertices.
Note that there is a significant gap (of order logn) between the two bounds.

While the above problem appears to be of considerable interest, the aforemen-
tioned framework completely avoids any discussion of robustness i.e resilience to noise.
Assume for a moment that f is a good quality dimension reduction map for a thresh-
old τ , i.e. (1) holds for a typical n–point configuration D of data points in RN . Since (1)
imposes no restrictions on how close to τ the lengths ∥f (p)−f (p′)∥2 can be, even a small
perturbation of f can completely distort the similarity relation on the reduced feature
vectors. For that reason, it is desirable that the distances in the distance network Γ are
“separated” from the threshold value, which motivates the following definition:

Definition 1.2 (ε–robust distance graphs). Let ε ≥ 0, τ > 0 be parameters. Assume that
a geometric graph Γ = (V ,E) in a Euclidean space has the property that any two vertices
v,w in V are adjacent if and only if ∥v −w∥2 ≤ (1 + ε)−1τ and are not adjacent if and only
if ∥v − w∥2 > (1 + ε)τ . Then we call the graph Γ an ε–robust distance graph with the
threshold τ .

The dimension reduction maps f are often defined as functions of data distribu-
tion. Since the precise distribution is typically unknown, an actually constructed map
f̂ is based on training data, and is only an approximation of the desired map f . Let
ε > 0 be a parameter, and assume that f̂ and f satisfy

(1 + ε)−1∥f̂ (p)− f̂ (p′)∥2 ≤ ∥f (p)− f (p′)∥2 ≤ (1 + ε)∥f̂ (p)− f̂ (p′)∥2 for all p,p′ ∈ RN . (2)

Now, if for a data set D the mapping f generates an ε–robust distance graph, i.e

∥f (p)− f (p′)∥2 ≤ (1 + ε)−1τ if and only if Sim(p,p′) = 1;

∥f (p)− f (p′)∥2 > (1 + ε)τ if and only if Sim(p,p′) = 0, p,p′ ∈D,

then, by (2), the image of D under f̂ also gives an accurate similarity network. To sum-
marise, the requirement that the distance graph generated by f is ε–robust can make
sure that the similarities are correctly identified even when the dimension reduction
map is only known up to an ε–distortion.

For ε–robust networks, we can pose an information-theoretic problem similar to
Problem 1.1 above:

Problem 1.3. Given parameters n,d,k,ε, does the set of d–regular ε–robust distance graphs
on n vertices in Rk comprise 1− o(1) fraction of all d–regular graphs on n vertices?

Solving Problem 1.3 is a main goal of this project. The d–regular graphs are a
popular mathematical model of sparse networks. Although the real networks are often
not d–regular (i.e some vertices may have more neighbors than others), the model is
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useful since it combines common features of real-world networks (such as expansion
properties) with relative ease of rigorous analysis.

The first main result of this paper is the following answer to problem 1.3, presented
later as Theorem 6.1:

Theorem. There are universal constants C̃, c > 0 with the following property. Suppose
k ≥ C̃d logn. Then the set of d–regular c√

d
–robust geometric graphs on n vertices in Rk

comprise 1− o(1) fraction of all d–regular graphs on n vertices.

The second main result of this paper is a lower bound on k in the setting that
almost all d-regular graphs on n vertices can be represented as robust graphs in Rk:

Theorem. Suppose 1− o(1) fraction of d-regular graphs on n vertices can be represented as
c√
d

-robust geometric graphs in Rk, where c is the small constant from the above theorem.

Then k ≥ c′′d logn
logd , for a small universal constant c′′ > 0.

It must be noted that to establish the second main result we apply two lemmas
— Lemma 7.1 and Lemma 7.2 in Section 7 — without proof. We believe that both
lemmas can be proved using established probabilistic tools.

2. Definitions

We start by recalling some standard definitions.

2.1. Graph-theoretic notions

Definition 2.1 (Adjacent vertices). Two vertices v,w in a graph Γ = (V ,E) are adjacent
if {v,w} ∈ E, and not adjacent otherwise.

Definition 2.2 (Adjacency matrices). For a graph Γ = (V ,E) on n vertices v1,v2, . . . , vn,
the adjacency matrix A of Γ is the n×n matrix with entries

aij =

1, if vi and vj are adjacent;

0, otherwise.

Definition 2.3 (Isomorphism classes of graphs). Two graphs Γ1 = (V1,E1) and Γ2 =
(V2,E2) are isomorphic if |V1| = |V2|, and there is a bijective mapping φ : V1 → V2 such
that for any v,w ∈ V1, {v,w} ∈ E1 if and only if {φ(v),φ(w)} ∈ E2. Graphs isomorphism is an
equivalence relation, thereby splitting the collection of all graphs into isomorphism classes.

Definition 2.4 (d–regular graphs). Let d ≥ 3. A graph Γ = (V ,E) is d–regular, if each
vertex v ∈ V has exactly d neighbors (adjacent vertices), equivalently, the graph is d–regular
if the adjacency matrix of Γ has exactly d ones in every row and column.
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Definition 2.5 (Random d-regular graphs). Let G̃n,d be the set of all d-regular graphs on
n vertices. Let G be a random variable such that for any G′ ∈ G̃n,d , P (G = G′) = 1

|G̃n,d |
: Then

G is a random d-regular graph.

2.2. Gaussian distributions

Definition 2.6 (Gaussian Variables). A random variable X is said to be Gaussian (or
normally distributed) if it has a probability density function given by:

fX(x) =
1

√
2πσ2

exp
(
−

(x −µ)2

2σ2

)
where µ is the mean and σ2 is the variance of X.

Definition 2.7 (Covariance Matrix). The covariance matrix Σ is a symmetric matrix that
encodes the variance of each component of a random vector and the covariance between each
pair of components. Mathematically, it is defined as:

Σ = E[(X−µ)(X−µ)T ]

where X is a random vector and µ is the mean vector. A diagonal covariance matrix Σ =
diag(σ2

1 ,σ
2
2 , . . . ,σ

2
n ) indicates that the components of X are uncorrelated, with variances σ2

i .

Definition 2.8 (Gaussian Vectors). A random vector X ∈ Rn is said to be multivariate
Gaussian (or normally distributed) if it has a probability density function given by:

fX(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x−µ)⊤Σ−1(x−µ)

)
where µ is the mean vector and Σ is the covariance matrix.

Definition 2.9 (Gaussian Matrices). A random matrix X ∈ Rm×n is said to have a matrix
normal distribution if its vectorized form vec(X) follows a multivariate normal distribution.
Specifically, X ∼MN (M,Σr ,Σc) if:

vec(X) ∼N (vec(M),Σc ⊗Σr)

where M is the mean matrix, Σr is the row covariance matrix, Σc is the column covariance
matrix, and ⊗ denotes the Kronecker product.

3. Use
√
A+C

√
d Id to embed G into Rn

Consider G̃n,d to be the set of labeled d-regular graphs on {1,2, ...,n}. We denote the
eigenvalues of an adjacency matrix of these d-regular graphs as λ1,λ2, ...,λn, where
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λ1 ≥ λ2 ≥ ... ≥ λn. First, we want to think about the second-largest eigenvalue under
absolute value.

Theorem 3.1 ([1, 4, 10]). Let G be a uniform random graph from G̃n,d . Denote λi(G) as
the eigenvalues for the adjacency matrix of G. Then there is a universal constant C > 0 such
that

P(max(|λ2(G)|, |λ3(G)|, ..., |λn(G)|) ≤ C
√
d) = 1− o(1).

Lemma 3.2. (Spectrum Shifting) Suppose we have matrix A. Denote the corresponding
eigenvalues of A as λ1, ...,λk, where Aνk = λkνk. Then, for matrix A + C Idk, we have
eigenvalues being shifted, meaning for each νk, (A+C Idk)νk = Aνk +Cνk = λkνk +Cνk =
(λk +C)νk. Therefore, λk +C are the eigenvalues for matrix A+CIdk.

Corollary 3.3. Let G be a uniform random graph from G̃n,d . Denote A be the corresponding
adjacency matrix. If C is sufficiently large, then with high probability, A+C

√
d is a positive

semi-definite matrix.

Definition 3.4 (Square Root of a Positive-Semi Definite Matrix). Consider a positive-
semi definite matrix A. By the definition of a positive-semi definite matrix, we know that
A = UΛU−1 under eigendecomposition where Λ is a diagonal matrix with non-negative
eigenvalues on its diagonal and U is a square matrix with the ith column is the eigenvector
corresponding eigenvalue Λii . Then, A

1
2 = UΛ

1
2U−1 and Λ

1
2 is just taking the square root

of the eigenvalues on the diagonal.

Since we are considering d-regular graph G, the corresponding matrix A should be
a random symmetric matrix of G. With the previous theorem, A + C

√
d is a positive

semi-definite matrix with 1 − o(1) probability. At the same time, the eigenvalues for
the new matrix should be λ1 +C

√
d, ...,λn +C

√
d and ≥ 0 with high probabilities.

By shifting the matrix by C
√
d Idn, we have a high probability that the matrix will

be positive semi-definite and the eigenvalues are shifted together to preserve the re-
lationships. At the same time this preserves the structure of the graph as much as
possible. In this case, the ratio of distance between non-adjacent vertices over the dis-
tance between adjacent vertices will be 1 + C√

d
. So the choice of ε will be of Θ( 1√

d
).

Later in Section 5, the choice of k depends on ε, k ≥ C logn
ε2 = Θ(d logn), having a lower

bound with larger ε.
Considering the special properties of the positive-semi definite matrix, we natu-

rally can consider (A+C
√
d)

1
2 .

Theorem 3.5 (See [5] for a related theorem). Let G be a d-regular random graph with n

vertices. Then with the probability of 1− o(1), the following statement holds. Let

{zi}ni=1 =
{√

A+C
√
d Idnei

}n

i=1
,
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where ei is the i-th standard basis vector in Rn and A is the adjacency matrix for G. Consider
the geometric graph Γ = (VΓ ,EΓ ) where:

VΓ = {z1, . . . , zn},

EΓ =
{
{zi , zj} : ∥zi − zj∥2 ≤ τ

}
.

Take τ D
√

2C1/2d1/4 −
√

2
4C1/2d1/4 . Then, Γ is well-defined and isomorphic to G.

Proof. For i , j:

⟨zi , zj⟩ = eT
√
A+C

√
d Idn

T√
A+C

√
d Idnej

= eT (A+C
√
d Idn)ej

(since the matrix is positive-semi definite symmetric matrix)

= eTi Aej +C
√
deTi ej

= eTi Aej

= Aij (which is the i, jth entry of A)

For i = j:
⟨zi , zi⟩ = eTi Aei +C

√
deTi ei = C

√
d = ∥zi∥22.

Figure 1: Visualizing how we construct an isomorphic geometric graph in the proof.

Recall: We obtain points z1, z2, ..., zn such that (See in Figure 1)

• ∥z∥i = C1/2d1/4 ∀i ∈ [n]

• zi , zj are orthogonal if i is not adjacent to j

• ⟨zi , zj⟩ = 1 if i is adjacent to j
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Choosing threshold τ : Next, we want to choose a threshold τ to prove that the re-
sulting geometric graph is isomorphic to G.

Consider the graph Γ = (VΓ ,EΓ ) where:

VΓ = {z1, . . . , zn},

EΓ =
{
{zi , zj} : ∥zi − zj∥2 ≤ τ

}
.

We want to choose τ such that Γ and G are isomorphic under the map i 7→ zi .
If i is not adjacent to j, then by Pythagorean Theorem ∥zi − zj∥2 =

√
2C1/2d1/4. If i is

adjacent to j, then ⟨zi , zj⟩ = 1. Then

∥zi − zj∥22 = ⟨zj − zi , zi − zj⟩
= ⟨zi , zi⟩+ ⟨zj , zj⟩ − 2⟨zi , zj⟩

= 2C
√
d − 2

⇒ ∥zi − zj∥ =
√

2

√
C
√
d − 1

(3)

Consider the geometric graph Γ = (VΓ ,EΓ ), with VΓ = {zi}i∈[n] and EΓ = {(zi , zj) | ∥zi −
zj∥2 ≤ τ}. Take τ D

√
2C1/2d1/4 −

√
2

4C1/2d1/4 . This is roughly the mean of
√

2C1/2d1/4 and
√

2
√
C
√
d − 1 (we used the first order Taylor approximation to estimate

√
2
√
C
√
d − 1).

Thus, Γ is a geometric graph in Rn isomorphic to G.

4. Gaussian Concentration

4.1. Rotational Invariance

Consider a Gaussian vector g = (g1, g2, . . . , gn) where each component gi is indepen-
dently and identically distributed according to the standard normal distribution N (0,1).
In this case, g has a multivariate normal distribution N (0, Idn), where Idn is the n-
dimensional identity matrix serving as the covariance matrix.

If M is any orthogonal matrix, then the transformed vector Mg also follows a stan-
dard Gaussian distribution. This can be shown through the properties of orthogonal
matrices and Gaussian distributions:

• Preservation of Dot Product: Orthogonal matrices preserve dot products, mean-
ing that MTM = Idn. This preservation implies that the transformed vector Mg

retains the same length and statistical properties as g.

• Covariance of Transformed Vector: The covariance matrix of the transformed
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vector Mg can be calculated as:

Cov(Mg) = MCov(g)MT = MIdnM
T = Idn

This shows that the covariance matrix of Mg remains the identity matrix, con-
firming that Mg is still a standard Gaussian vector.

4.2. Tail bound by Gaussian Concentration Inequality

Definition 4.1. A function f : Rn → R is said to be Lipschitz continuous if there exists a
constant L ≥ 0 (called the Lipschitz constant) such that for all points x,y in the domain of
f , the following inequality holds:

|f (x)− f (y)| ≤ L∥x − y∥2,

where ∥x − y∥2 denotes the Euclidean distance between x and y.

Theorem 4.2 (See, for example, [7]). The Gaussian concentration inequality states that
for a Lipschitz function f with Lipschitz constant L, and a standard Gaussian vector g, the
following inequality holds:

P(|f (g)−E[f (g)]| ≥ t) ≤ 2exp
(
− t2

2L2

)
This inequality is particularly useful for functions like the Euclidean norm, which are in-
herently 1-Lipschitz.

4.3. Applying the Inequality to the Euclidean Norm

For the Euclidean norm of a standard Gaussian vector g, since it is a 1-Lipschitz func-
tion (i.e., L = 1), we can apply the Gaussian concentration inequality to obtain

P (|∥g∥2 −E[∥g∥2]| ≥ t) ≤ 2exp
(
−t

2

2

)
, t > 0.

This inequality tells us how the norm of a Gaussian vector deviates from its expected
value, providing insights into the spread of the norm values around their mean, which
is approximately

√
n.
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4.4. Variance of the Euclidean Norm of a Gaussian Vector

Consider a Gaussian vector G = (G1,G2, . . . ,Gn), where each component Gi ∼ N (0,1)
independently. The Euclidean norm of G is given by

∥G∥2 =
√
G2

1 +G2
2 + · · ·+G2

n.

The expected value of ∥G∥2 can be approximated by

E[∥G∥2] =
√
n.

The variance of ∥G∥2 can be derived from the properties of the chi-squared distri-
bution:

Var(∥G∥2) = Var(
√
χ2
n) ≈ 1

2
.

Given that ∥G∥22 follows a chi-squared distribution with n degrees of freedom:

E[∥G∥22] = n and Var(∥G∥22) = 2n.

Thus, the variance of the Euclidean norm for large n is:

Var(∥G∥2) ≈ 1
2
.

5. The Johnson–Lindenstrauss Lemma

We introduce The Johnson–Lindenstrauss (J-L) lemma for dimensionality reduction.
It asserts that a set of points in a high-dimensional space can be embedded into a
much lower-dimensional space such that the pairwise distances between the points
are approximately preserved. This helps us handling high-dimensional data, where
working directly in the original space may be computationally infeasible or inefficient.

Consider a set of points X1,X2, . . . ,Xn in a high-dimensional space RN . These points
Xi ’s represent the original data in the high-dimensional feature space. The goal is to
find a new set of points y1, y2, . . . , yn in a much lower-dimensional space Rk (with k ≪
N ) such that the distances between the points are approximately preserved. The Xi ’s
define the relationships and distances in the original space, which we aim to maintain
in the reduced space.

Mathematically, for all i, j ≤ n, we want:

∥Xi −Xj∥2 ≈ ∥yi − yj∥2

This means that the distance between any pair of points Xi and Xj in the original space
should be approximately equal to the distance between the corresponding points yi
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and yj in the reduced space. The J-L lemma provides the theoretical guarantee that
such an embedding is possible with high probability, given certain conditions on the
dimensionality k.

The key idea is to use a random projection matrix to map the high-dimensional
points Xi ’s into the lower-dimensional space, thereby creating the points yi ’s. This
random projection is achieved using a matrix with entries drawn from a Gaussian
distribution, ensuring that the pairwise distances are preserved up to a small error.

Theorem 5.1 (The JL Lemma [2, 3, 6, 8]). Let X1,X2, . . . ,Xn ∈ RN be points in a feature
space RN . For any ε ∈ (0,1) and k ≥ C logn

ε2 , there exists a set of points y1, . . . , yn in Rk such
that for all i, j we have

(1− ε)∥Xi −Xj∥2 ≤ ∥yi − yj∥2 ≤ (1 + ε)∥Xi −Xj∥2.

Figure 2: Johnson-Lindenstrauss lemma’s illustration: shows how a geometric graph
in a high-dimensional space R3 can be projected to a lower-dimensional space R2

without changing the topology.

Proof. Let G be a K×N standard Gaussian matrix (all entries are independent N (0,1)).
Consider points GX1,GX2, . . . ,GXn ∈ RK . Fix i , j, and consider

∥G(Xi −Xj)∥2.

Note that G(Xi −Xj) is a k-dimensional random vector. By properties of Gaussian
matrices, if y1, y2, . . . , yn are jointly Gaussian, then any linear combination

∑n
i=1 aiyi is

a Gaussian variable for any choice of numbers a1, . . . , an.

E[G(Xi −Xj)] = E[G](Xi −Xj) = 0⃗.

The covariance matrix Σ of V = G(Xi −Xj) is:

Σ = E[(G(Xi −Xj))(G(Xi −Xj))
T ] = ∥Xi −Xj∥22 Idk ,
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where Idk is the k × k identity matrix.
Using concentration inequalities for Gaussian distributions:

P
(∣∣∣∣∥G(Xi −Xj)∥2 −

√
K∥Xi −Xj∥2

∣∣∣∣ ≥ t
)
≤ 2exp

− t2

2∥Xi −Xj∥22

 , t ≥ 0.

Let t = ε
√
K∥Xi −Xj∥2:

P
(∣∣∣∣∥G(Xi −Xj)∥2 −

√
K∥Xi −Xj∥2

∣∣∣∣ ≥ ε
√
K∥Xi −Xj∥2

)
≤ 2exp

(
−ε

2K
2

)
.

Choosing K ≥ 10logn
ε2 ensures:

P
(∣∣∣∣∥G(Xi −Xj)∥2 −

√
K∥Xi −Xj∥2

∣∣∣∣ ≥ ε
√
K∥Xi −Xj∥2

)
≤ 1
n3 .

Applying the union bound over all pairs (i, j):

P
(
∃(i, j) :

∣∣∣∣∥G(Xi −Xj)∥2 −
√
K∥Xi −Xj∥2

∣∣∣∣ ≥ ε
√
K∥Xi −Xj∥2

)
≤

(
n
2

)
· 1
n3

≤ n2

2
· 1
n3 =

1
2n

.

Therefore, with high probability:

(1− ε)
√
K∥Xi −Xj∥2 ≤ ∥G(Xi −Xj)∥2 ≤ (1 + ε)

√
K∥Xi −Xj∥2.

Let yi = GXi√
K

for i = 1,2, . . . ,n. Then:

(1− ε)∥Xi −Xj∥2 ≤ ∥yi − yj∥2 ≤ (1 + ε)∥Xi −Xj∥2.

6. Embedding for robust graphs: a sufficient condition on k

Theorem 6.1. Let G = (V ,E) be a random d-regular graph on n vertices. Let k ≥ C̃d logn,
where C̃ is a large universal constant. With probability 1-o(1) there exists a c√

d
-robust

geometric graph in Rk isomorphic to G, where c is a small universal constant.

Remark 6.2. By definition of an ε̃-robust graph proving the lemma requires that we
show the following: There exists a geometric graph Γ ′ =

(
V ′
Γ
,E′

Γ

)
, V ′

Γ
= {v′1,v

′
2, ...,v

′
n} in

Rk and a distance threshold τ such that ∀i, j ∈ V :

1. i and j are adjacent⇔ ∥v′i − v
′
j∥2 ≤ τ

(
1 + c√

d

)−1
.
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2. i and j are not adjacent⇔ ∥v′i − v
′
j∥2 > τ

(
1 + c√

d

)
.

Figure 3: An embedding of a graph G as a 0.1-robust distance graph in R2 (τ = 1) and
the distance between any two adjacent vertices is at most 0.9. The distance between

any two non-adjacent vertices is at least 1.1.

Figure 4

Proof. Let G be a random d-regular graph on n vertices. Consider the geometric graph
in Rk Γ ′ =

(
V ′
Γ
,E′

Γ

)
where the vertices V ′

Γ
= {v′1,v

′
2, ...,v

′
n} are constructed by first embed-

ding G into Rn (as in Section 3) and then embedding the resulting geometric graph
into Rk using the Johnson-Lindenstrauss Lemma (This process is shown in Section 5).
Use τ =

√
2C̃

1
2d

1
4 −

√
2

4C̃
1
2 d

1
4

as the distance threshold.

To apply the Johnson–Lindenstrauss Lemma with a distortion ε it is required that

k ≥
C log(n)

ε2 .
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Let ε = c√
d

, for some small constant c. Then assuming that C̃ from Lemma 6.1 is
sufficiently large, the required inequality is satisfied.

First, let us check that property 1 from Remark 6.2 is satisfied. Let i and j be
adjacent vertices. Now, by the Johnson–Lindenstrauss Lemma:

∥v′i − v
′
j∥2 ≤

(
1 +

c
√
d

)(√
2C̃

1
2d

1
4 −

√
2

2C̃
1
2d

1
4

)
≤

(
1 +

c
√
d

)−1 (
1 +

c
√
d

)2√
2
(
C̃

1
2d

1
4 − 1

2C̃
1
2d

1
4

)
≤

(
1 +

c
√
d

)−1
√2C̃

1
2d

1
4 +

8
√

2C̃c − 2
√

2

4C̃
1
2d

1
4

+

√
2c

(
C̃c − 1

)
C̃

1
2d

3
4


=

(
1 +

c
√
d

)−1
√2C̃

1
2d

1
4 −

√
2
(
2− 8C̃c

)
4C̃d

1
4

+

√
2c

(
C̃c − 1

)
C̃

1
2d

3
4


≤

(
1 +

c
√
d

)−1

τ (provided c is small enough)

Thus, if i and j are adjacent, then

∥v′i − v
′
j∥2 ≤

(
1 +

c
√
d

)−1

τ (4)

On the other hand, suppose i and j are not adjacent. Again by the Johnson–
Lindenstrauss Lemma:

∥v′i − v
′
j∥2 ≥

(
1 +

c
√
d

)−1√
2C̃

1
2d

1
4

Also:

τ

(
1 +

c
√
d

)2

=
(
1 +

c
√
d

)2√
2
(
C̃

1
2d

14
−

√
2

4C̃
1
2d

1
4

)
<
√

2C̃
1
2d

1
4

Combining the previous two inequalities, we get: if i and j are not adjacent, then

∥v′i − v
′
j∥2 > τ

(
1 +

c
√
d

)
(5)

Statements 1 and 2 from Remark 6.2 follow from inequalities (4) and (5).

7. Embedding for robust graphs: a necessary condition on k

For the proof of Theorem 7.3 below, we will need the following two lemmas which
we state without proof. We believe that the proof of Lemma 7.1 can be obtained us-
ing properties of expansion graphs. We believe that the proof of Lemma 7.2 can be
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obtained using counting arguments with the union bound.

Lemma 7.1. For every δ > 0 there exists R = R (δ) such that the following holds for 1−o (1)
fraction of d-regular graphs G on n vertices. If Γ is a distance graph in Rk isomorphic to G
then there is a sphere u +R ·Bk

2 comprising 1− δ fraction of vertices of Γ .

Lemma 7.2. Let δ > 0 be a small constant. For every d-regular graph G on n vertices, let
HG be an induced subgraph of G on n− δn vertices, and let T be a subset of G̃n,d of size at
least 1

2 |G̃n,d |. Then the number of distinct isomorphism classes of HG with G ∈ T is at least
nc
′dn, for a universal constant c′.

The next theorem is the second main result of the note:

Theorem 7.3. Suppose 1−o(1) fraction of d-regular graphs on n vertices can be represented
as c√

d
-robust geometric graphs in Rk, where c is the small constant from Section 5. Then

k ≥ c′′d logn
logd , for some sufficiently small c′′ > 0.

Proof. Assume toward a contradiction k < c′dn log(n)

log 4R
√
d

c

. Suppose 1 − o (1) fraction of d-

regular graphs on n vertices can be represented as c√
d

-robust geometric graphs in Rk.

Let G be a d-regular graph on n vertices, with Γ an isomorphic geometric graph in Rk.
Let δ be a small constant and u +R ·Bk

2 be a sphere containing 1−δ fraction of vertices
of Γ (the existence of such sphere follows from Lemma 7.1). Let ΓG be the induced
subgraph of Γ containing all of the vertices that are contained in u +R ·Bk

2.
Construct a maximal packing of u+R ·Bk

2 by translates of c
4
√
d
Bk

2 (we can do this by

adding non-overlapping translates of c
4
√
d
Bk

2 into u+R ·Bk
2 until it is no longer possible

to add any more). Let Γ ′G be the distance graph in Rk formed by shifting the vertices of
ΓG to the nearest center of a sphere in the packing. This does not change the topology
of the graph, as each vertex shifts by at most distance c

2
√
d

and Γ is c√
d

-robust. We refer
to Figure 5 for illustration.

By volumetric argument the number of spheres in the packing is at most:

(
4R
√
d

c

)k
. (6)

Thus, the number of possible isomorphism classes of Γ ′G is at most:

(
4R
√
d

c

)k(n−δn)

≤
(

4R
√
d

c

) c′d logn

log 4R
√
d

c

(n−δn)

< nc
′dn. (7)

On the other hand, by Lemma 7.2 the number of possible isomorphism classes of Γ ′G is
at least nc

′dn. This is a contradiction, so we conclude that k ≥ c′′d logn

log 4R
√
d

c

.
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Figure 5: The vertices of Γ are "shifted" to the nearest center of a sphere in the
packing to form Γ ′. Γ and Γ ′ have the same topology.
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