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When a set theorist hears “combinatorics”:

Infinite Ramsey theory
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(Communicated by Leonardo Finzi)

Abstract

Ramsey theory studies how to find highly-ordered substructures within an other-

wise unwieldy object. Ramsey theory is a highly active area of research in contempo-

rary mathematics, with some mathematicians focusing on finite structures and others

on infinite ones. In this survey paper, we will give an overview of a few topics in infinite

Ramsey theory, with an emphasis on how set theory is involved. That is, we will focus

on large, infinite objects and ask exactly how infinite they must be in order to ensure

that we have infinite, highly-ordered substructures. After introducing the general idea

in the finite case, we will prove Ramsey’s theorem about infinite graphs. Then we

will transition into questions about finding uncountably infinite, highly-ordered sub-

structures. This will give us a convenient excuse to discuss infinities and independence

results in set theory, as well as topological colorings. No knowledge of set theory or

topology is required to understand this paper.
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WHEN A SET THEORIST HEARS “COMBINATORICS”: INFINITE RAMSEY THEORY

1. Introduction

Ramsey theory is a branch of combinatorics and focuses on finding highly ordered

(and hence simple) structures within a larger, more complicated structure. For exam-

ple, suppose we are interested in studying graphs1 today – and why wouldn’t we be?

Graphs can be quite messy and complicated, and hence we are interested in finding

large subgraphs that are very simple. Two kinds of simple subgraphs are cliques (in

which any two nodes in the subgraph are connected) or independent sets (in which

no two nodes in the subgraph are connected).

Take a look at Figure 1 below. Notice in that graph that the nodes A,B,C form a

clique, since any two of them are connected (A to B, A to C, and B to C). Also notice

that the nodes A,D,E form an independent set, since no two of them are connected

(A is not connected to D, A is not connected to E, and D is not connected to E).

By contrast, the subgraph with A,C,D is neither a clique nor an independent set.

Indeed, it is not a clique since A is not connected to D, and it is not an independent

set because A is connected to C.

A B

C D

E

Figure 1: A graph with vertices A through E.

We can summarize what’s simple about cliques and independent sets by saying

that the edge relation is uniform for these subgraphs. Let’s drive the point home

by illustrating what a clique with four nodes looks like, and then an independent set

with four nodes. See Figure 2 for the clique of size four.

Likewise, see Figure 3 for the picture of an independent set with four nodes (no

edges in sight!).

I invite the reader to pause here for a moment and to think about how simple it is

to describe the above two graphs. For the first, all you have to say is “I have 4 nodes

and they are all connected.” The second is likewise very simple to describe. And to

1We’re talking about simple, undirected graphs.
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A B

C D

Figure 2: A clique with four nodes

A B

C D

Figure 3: An independent set with four nodes

repeat a point made earlier: these subgraphs are simple because the edge relation is

uniform. Before continuing, we’ll introduce the following standard vocabulary:

Definition 1.1. A subgraph of a graph G is homogeneous if it is either a clique or

an independent set (with the edge relation inherited from G).

Remark 1.2. There is another very common way to look at this matter. Some

folks prefer to think about edge colorings on a complete graph. That is, start with n

nodes and connect them all. Color each edge red or blue. With this language, you’d

be interested in finding monochromatic subsets. There’s no loss of information in

writing things as we have so far, or in terms of edge colorings. But it is important

that you’re aware that there are other ways of describing what’s happening.

Key Theme of Ramsey Theory

This now brings us to the key theme of Ramsey theory: every large enough

graph has a large homogeneous set. Put differently,

(∗) Every graph with enough vertices must have either a large clique or a

large independent set.

Let’s illustrate this by using an example with less mathematical language. Suppose

you are hosting a raucous party. You’d like to know how many people you must invite

in order to ensure that there are three people – let’s be imaginative and call them

a, b, c – so that either
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1. a and b have met before, a and c have met before, and b and c have met before;

OR

2. none of a, b, c have ever met each other.

In other words, how many people must you invite in order to guarantee that there

must be a homogeneous set of size 3?

It turns out that inviting five people is not enough, since the configuration in

Figure 4 is logically possible.

A

B

CD

E

Figure 4: Five people is not enough

In Figure 4, an edge between two nodes means that those two people have met

each other. So for example, A and B have met before, but A and C have not met

before.

Now why does this graph not have a clique of size 3? Suppose we take any three

nodes from this graph, and we will show that there are two that are not connected.

Since the graph is symmetric, we may suppose for concreteness that A is one of the

nodes. Let’s look at some cases:

• If B is the next (in alphabetical order) node of the three, then any possible

third node is either disconnected from B or from A.

• If C is the next node of the three, then C is not connected to A, and likewise

if D is the next node.

You are invited to see that no matter which three nodes you pick, there will be two

of them that are connected, and hence there are no independent sets of size 3 either.

The following fact shows that 6 is the smallest number needed to ensure that we

have a homogeneous set of size 3, no matter what the graph looks like. This is known

as the Ramsey Number R(3, 3).
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Fact 1.3. 6 is the smallest number of people you need to invite to ensure that either

(a) there are three people who have all met, or

(b) there are three people no two of whom have met.

Proof. We start by choosing a person A at random. Consider the other 5 guests. We

will split them into two groups: those who know A and those who don’t. By the

pigeonhole principle, there must be either 3 people who know A or three people who

don’t.2 Let’s suppose for concreteness that there are three other people who know A,

and we call these people X, Y , and Z. See Figure 5 for a picture of the situation so

far, where the dotted lines indicate that we don’t yet know whether there are edges

between the given nodes.

? ?

?

A

X Y Z

Figure 5: Six guests suffices: First use the Pigeonhole Principle

We then have some subcases: if there are at least two people among X, Y, Z who

know each other, then we have a clique of size 3. Suppose for concreteness that X

knows Y . Then A,X, Y form a clique, as depicted in Figure 6 below.

?

?

A

X Y Z

Figure 6: Six guests suffices: Now we have a clique in this case

By contrast, if none ofX, Y , or Z know each other, then they form an independent

set. In either case, we’re done!

2Note that this is where we are using that we have 6 guests: if we only had 5, then we wouldn’t
be able to push through this stage in the argument!
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It turns out that for any k (specifying the size of a homogeneous set), there is

a large enough n so that inviting n people to your party guarantees that there is

either a clique of size k or an independent set of size k. The least such n is known

as the Ramsey number R(k, k).3 A few brief comments about the history are in

order here. Ramsey proved his famous theorem about infinite graphs and infinite

homogeneous sets in his 1930 paper (see [12]). In that paper, he also made some

comments about these finite versions. However, the main paper that first developed

these finite versions came later, in 1935, and is due to Erdős and Szekeres (see [6]).

In terms of exposition, we are working from the finite to the infinite, but the history

has things in the other order. Now to state the theorem:

Theorem 1.4. (Erdős and Szekeres, [6]) Let k ≥ 2 be a natural number. Then there

is an n so that for any graph G with at least n vertices, G has a homogeneous set of

size k.

There is much more that one can say about this topic for finite k, but we wish to

transition into talking about infinite graphs.

Section Summary 1.5. After reading this section, you should know what homo-

geneous sets in the context of graphs are. You should also know the central theme

of Ramsey theory: any sufficiently large graph has a large homogeneous set. And

finally, you should know that R(3, 3) = 6.

2. Infinite graphs

In this section, we begin our discussion of infinite graphs. We saw in the previous

section that for any k ≥ 2 (specifying the size of a homogeneous set), there is a large

enough (finite) n so that every graph of size n (or more) has a homogeneous set of

size k.

Now consider the following question:

Question 2.1. Does every infinite graph have an infinite homogeneous set?

Or to use the analogy of hosting a party: if you invite infinitely many guests, does

that guarantee that either there are infinitely many guests who have all met each

other, or infinitely many guests no two of whom have met each other?

It turns out that the answer is yes! This is Ramsey’s theorem. We will end up

giving the proof in full detail, but first we’re going to translate into the language of

3It is known that R(4, 4) = 18 ([10]) and that R(5, 5) is between 43 and 49 ([7] and [11]). There
are asymmetric versions R(k, l) as well. All of this to say: the discussion for finite k is far from over!
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colorings of pairs of natural numbers. Once we complete that translation and give a

few examples, we will launch into the proof of Ramsey’s theorem.

Definition 2.2. Let X be a nonempty set. We use [X]2 to denote the set of x ⊂ X

so that x has exactly 2 elements.

A 2-coloring of a set X is a function c : [X]2 → {0, 1} (c for “coloring”).

So a 2-coloring c of a set X assigns a “color” – either 0 or 1 – to each pair of

distinct elements from X, but without considering the order of the two elements.

You can think of 0 and 1 as red and blue if you’d like.4

One can also consider m-colorings instead of just 2-colorings (for m ≥ 2). We’re

focusing on 2-colorings since that is enough to introduce and motivate the topic.

Though that is the precise definition of a 2-coloring, it is in practice easier to think

of a 2-coloring as follows:

Remark 2.3. A 2-coloring c of a set X is the “same” as a symmetric function c′

defined on {(a, b) ∈ X ×X : a ̸= b}. That is, an input to c′ is a pair of distinct

elements from X, and if a, b ∈ X are distinct, then c′(a, b) = c′(b, a).

We can also go back-and-forth between 2-colorings and graphs. Here’s an example:

suppose that X is the set {A,B,C,D}. We’ll think of a 2-coloring as a symmetric

function as in the previous remark. So suppose we define

c(A,B) = c(B,D) = c(A,D) = c(A,C) = 1

and define c to be 0 otherwise. We get the same information by considering a graph

with A,B,C, and D as vertices and defining two vertices to be connected exactly

when c gives 1 for that pair. See Figure 7.

A B

C D

Figure 7: Back-and-forth from colorings to graphs

Continuing, we now define more precisely what we mean by a homogeneous set in

the context of colorings:

Definition 2.4. Given a set X and 2-coloring c on X, a subset H ⊆ X is said to be

homogeneous for c if c is constant on [H]2.

4Or, say, mauve and chartreuse – but not the French liqueur.
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That is, H ⊆ X is homogeneous for c when there exists j ∈ {0, 1} so that for

every x ∈ [H]2, c(x) = j. The order of the quantifiers is crucial!

Remark 2.5. Homogeneous sets for 2-colorings correspond to cliques or independent

sets in the context of graphs.

Now we can state Ramsey’s theorem more precisely.

Theorem 2.6. (Ramsey, [12]) Given any 2-coloring c : [N]2 → {0, 1} of the natural

numbers, there exists an infinite H ⊂ N so that H is homogeneous for c.

To make the proof as perspicuous as possible, we’ll divide it into two stages. In the

first stage, we work to prove the existence of something called a tail homogeneous

set. This is the poor man’s version of a homogeneous set. Then we finish the proof

by refining the tail homogeneous set into a truly homogeneous set.

Definition 2.7. Let c be a 2-coloring of N, and let a0 < a1 < a2 < . . . be an infinite

increasing sequence of natural numbers. We say that ak is a friendly element in the

sequence if for all n with k < n, c(ak, an) = 1. We say that ak is a lonely element in

the sequence if for all n with k < n, c(ak, an) = 0.

The sequence a0 < a1 < a2 < . . . is tail homogeneous if every element in the

sequence is either friendly or lonely.

So ak is friendly if it is connected to every later element, and ak is lonely if it is

not connected to any later element.

Remark 2.8. Constructing the “tail homogeneous” set will require applying the pi-

geonhole principle infinitely-many times. Turning it into a truly homogeneous set will

require an additional application of the pigeonhole principle. Thus we can summarize

the proof of Theorem 2.6 by saying:

(∗) apply the pigeonhole principle ∞+ 1-many times.

Our first lemma says that we can in fact refine a tail-homogeneous set into a

homogeneous set:

Lemma 2.9. Suppose that c is a 2-coloring of N and that a0 < a1 < a2 < . . . is a

tail homogeneous sequence for c. Then there is an infinite H ⊂ {ak : k ∈ N} so that

H is homogeneous for c.

Proof. Let c and a0 < a1 < a2 < . . . be fixed. By definition of a tail homogeneous

sequence, for each k, ak is either friendly or lonely. Since there are infinitely-many

distinct elements on the sequence, we may apply the pigeonhole principle to conclude
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that either there are infinitely-many friendly elements or infinitely-many lonely el-

ements (or both). Suppose for concreteness that there are infinitely-many friendly

elements on the sequence. Define H := {ak : ak is friendly}, and we claim that H is

homogeneous for c with color 1.

This means that we need to show that for any two distinct elements x, y ∈ H,

c(x, y) = 1. So fix x and y from H with x ̸= y. Let x = ak and y = an. By

relabelling if necessary, assume that k < n, i.e., that an occurs later in the sequence.

Now recall that ak is a friendly element of the original sequence. Thus for any m > k,

c(ak, am) = 1. In particular, since n > k, we conclude that c(ak, an) = 1. Since

x = ak and y = an were arbitrary, we’ve shown that H is an infinite homogeneous set

for c.

Now we turn to the more difficult and interesting part: constructing a tail homo-

geneous sequence. This is a recursive construction, but it can be challenging to see at

first how it works and why one would want to do the construction in this way. Hence,

I’m going to do something here which is not efficient, in terms of space, but which

serves a helpful didactic purpose: in the proof, I will begin by writing out the first

two steps of the recursion. Then I will start the proof over, making it more formal

and precise.

Lemma 2.10. Suppose that c is a 2-coloring of N. Then there is a tail homogeneous

sequence a0 < a1 < a2 < . . . for c.

Proof. First Pass: we’ll describe the first couple of steps of the recursion.

We begin by setting a0 = 0. Now observe that for any k > 0, either c(a0, k) = 0

or c(a0, k) = 1. Let’s split {1, 2, 3, 4 . . .} into those k so that c(a0, k) = 0 and those so

that c(a0, k) = 1. Apply the pigeonhole principle to see that there are either infinitely-

many k ≥ 1 with c(a0, k) = 0 or there are infinitely-many k ≥ 1 with c(a0, k) = 1 (or

both). Let R0 be such an infinite set. Here “R” stands for reservoir.

Suppose for concreteness that every k ∈ R0 is connected to a0 = 0, i.e., that

c(a0, k) = 1 for all k ∈ R0. As we continue the construction, we will pick all of

our future points a1 < a2 < . . . from R0. Every single future point we place on the

sequence will come from R0. This means that every later an will be connected to a0,

and hence that a0 will be a friendly element in the resulting sequence – as long as we

keep picking points from R0. (If we have c(a0, k) = 0 for all k ∈ R0, then a0 will turn

out to be a lonely element in the sequence.)

At future stages in the proof, we will do two things: we will shrink our infinite

reservoir (while keeping it infinite), and we will pick a new point. Here’s what this

looks like in the next stage: let a1 be the least element of R0. Note that a0 < a1.
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Apply the pigeonhole principle again to split R0 \ {a1} (i.e., all those points in R0

above a1, since a1 is the least element) into two sets: Either there are infinitely-many

k ∈ R0 so that c(a1, k) = 0 or there are infinitely-many k ∈ R0 so that c(a1, k) = 1.

Let R1 be such an infinite set, and suppose for concreteness that c(a1, k) = 0 for all

k ∈ R1. It is crucial to observe that since R1 ⊂ R0, when we pick future points from

R1, we are still picking points from R0, and hence we maintain that all future points

are connected to a0. But we also ensure that no future points are connected to a1.

In other words, a1 will become a lonely element in the sequence, and a0 will stay a

friendly element in the sequence as long as we keep picking points from R1.

Second Pass We now give the more precise proof. We define by recursion a

sequence (a0, R0), (a1, R1), (a2, R2) . . . satisfying the following recursion hypotheses

(which have cute names) for each m ∈ N:

1. for all k < m, ak < am (points increasing);

2. Rm ⊂ N is infinite and am < min(Rm) (plentiful reservoir);

3. for all k < m, Rm ⊂ Rk (shrink reservoir);

4. either

(4a) for all n ∈ Rm, c(am, n) = 0 (am eventually lonely) OR

(4b) for all n ∈ Rm, c(am, n) = 1 (am eventually friendly).

5. If m ≥ 1, then am ∈ Rm−1.

To start the recursion, we define a0 = 0 and apply the pigeonhole principle to find an

infinite R0 ⊂ {1, 2, 3, 4, . . .} so that either (4a) or (4b) above is true. Note that items

(1), (3), and (5) are vacuous in the present case, since m = 0. This defines (a0, R0)

satisfying the above recursion hypotheses.

Now suppose that we’ve defined (a0, R0), . . . , (am, Rm), and we define the next

pair (am+1, Rm+1). Let am+1 = min(Rm). By condition (2) applied to m, this secures

condition (1) for m+1. Apply the pigeonhole principle to the infinite set Rm\{am+1}
to define an infinite Rm+1 ⊂ Rm so that either c(am+1, n) = 0 for all n ∈ Rm+1 or

so that c(am+1, n) = 1 for all n ∈ Rm+1. This secures the remaining conditions for

m+ 1. Since m was arbitrary, this completes the construction of the sequence.

We now show that a0 < a1 < a2 < . . . forms a tail homogeneous sequence.

Fix k ∈ N, and we will show that either ak is lonely in the sequence or that ak is

friendly in the sequence. Consider the reservoir Rk associated to ak. By our recursion
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hypotheses, we know that either for all n ∈ Rk, c(ak, n) = 0 or that for all n ∈ Rk,

c(ak, n) = 1. Let’s suppose for concreteness that for all n ∈ Rk, c(ak, n) = 0. We

claim that ak is lonely in the sequence. Thus fix an arbitrary larger n > k, and we

show that c(ak, an) = 0. By recursion hypothesis (5), we know that an ∈ Rn−1. By

recursion hypothesis (3), we also know that Rn−1 ⊆ Rk. Thus an ∈ Rk. Therefore,

c(ak, an) = 0, as we intended to show.

We can now finish the proof of Theorem 2.6 by stitching the above two lemmas

together:

Proof. (Of Theorem 2.6) Let c be an arbitrary 2-coloring on N. By Lemma 2.10,

we may construct a sequence a0 < a1 < a2 < . . . which is tail homogeneous for c.

By applying Lemma 2.10, we can find an infinite H ⊂ {an : n ∈ N} so that H is

homogeneous for c.

Remark 2.11. Ramsey’s middle name was Plumpton. Poor guy.

It’s worth drawing out a couple of corollaries from this, the first of which is a

familiar result from an intro to analysis course:

Corollary 2.12. Let (an : n ∈ N) be a sequence of real numbers. Then it has a

monotonic subsequence.

Proof. Define a coloring c on N by fixing arbitrary k < n and setting c(k, n) = 0 iff

ak > an and setting c(k, n) = 1 otherwise. Let H ⊂ N be an infinite homogeneous set

for c, as guaranteed by Theorem 2.6. Suppose that c takes the constant value 1 on

[H]2. Then for any k < n in H, we have c(k, n) = 1 and hence ak ≤ an. This implies

that the sequence (an : n ∈ H), where we restrict to those elements whose indices are

in H, is monotonic.

Another corollary:

Corollary 2.13. Let G be a graph with infinitely-many vertices. Then G has an

infinite homogeneous set.

Proof. Let v0, v1, v2, . . . list out infinitely-many pairwise distinct vertices from G.

Define a coloring c on N by fixing arbitrary k ̸= n and setting c(k, n) = 0 iff vk
and vn are not connected in the graph. Let H ⊂ N be an infinite homogeneous set

for c. Arguing as in the previous corollary, we see that {vn : n ∈ H} is the desired

homogeneous set (a clique if c takes constant value 1 on [H]2 and an independent set

if c takes constant value 0 on [H]2).
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Section Summary 2.14. After reading this section, you should know how to go

back-and-forth from graphs to 2-colorings. Then you should know that Ramsey’s

theorem shows that every infinite graph has an infinite homogeneous set, and you

should know that the proof involves “∞+1”-many applications of the pigeonhole

principle. If you are particularly interested in the topic, you should at least know

that the proof of Ramsey’s theorem given here involves two stages: first constructing

a tail homogeneous set and then thinning it to a homogeneous set.

3. Sadness and newfound joys: Uncountable infinities

This is the point where we start to introduce some set theory. We’ll first make

a couple of remarks about infinite sizes in general, before developing the theme of

finding larger and larger homogeneous sets in a graph. We begin by recalling when

two sets have the same cardinality (i.e., size):

Definition 3.1. Two sets X and Y have the same cardinality iff there is a bijection

f : X → Y .

A bijection acts as a one-to-one correspondence between the elements of X and

those of Y .

Definition 3.2. We say that a set X is countably infinite if X has the same size

as N. If X is infinite but not countably infinite, then we say that X is uncountably

infinite, or more simply uncountable.

What’s perhaps surprising upon first making the aquaintence of these ideas is

that two infinite sets X and Y can have the same size, even if in some sense there are

“more” things in Y than in X. Here are some examples:

Example 3.3. N× N, Q, and Z are all countably infinite.

One might then think that every infinite set is countable, but this is not the case.

In 1891, Georg Cantor proved that the set of real numbers R has a strictly larger

infinite size than that of the natural numbers:

Theorem 3.4. (Cantor, [3]) R is uncountably infinite. That is to say, there is no

bijection from N to R.

Before we refine our question, recall that the key idea of Ramsey theory is that any

large enough graph has a large homogeneous set. Moreover, we know from Theorem

2.6 that any infinite graph has an infinite homogeneous set.
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Question 3.5. Does every uncountably infinite graph have an uncountably infinite

homogeneous set? Put differently, if X is uncountably infinite and c : [X]2 → {0, 1}
a 2-coloring, does c have an uncountably infinite homogeneous set?

And now the following lachrymose result:

Theorem 3.6. (Sierpinski, [13]) There is a coloring c : [R]2 → {0, 1} so that c has

no uncountably infinite homogeneous set.

We’re going to prove a slightly weaker version of this theorem, where we come up

with a coloring defined on some uncountable X ⊂ R; this turns out to actually not

be too difficult. But before proving the restricted version of the theorem, we need to

develop a bit of the theory of cardinal numbers.

Discussing cardinal numbers will help us refine our questions about how large of

a homogeneous set we’re looking for and about how large of a graph we need before

having a homogeneous set of such a size. Moreover, the proof of Sierpinski’s theorem

will require us to have a slightly more refined understanding of cardinalities.

A cardinal number is a size number. The first ones are: 0, 1, 2, 3, ... and so

on. That is to say, the natural numbers (including 0) are all cardinal numbers. This

makes sense: when we count finite numbers of things, we use the natural numbers to

do so. After these finite sizes comes the first infinite cardinal number. This is denoted

ℵ0, and it is the size of N.
After this, there is a next infinite size, ℵ1. Then a next one, ℵ2, followed by ℵ3,

ℵ4, and so on. You can then take a limit of that sequence, call the limit ℵω, and

start the process over: ℵω+1, ℵω+2, and so on. A key point is that for any cardinal

number, there is always a next highest cardinal number. This “ℵ-sequence” acts as

a ruler for cardinalities of all infinite sets: ZFC set theory proves that for any infinite

set X, there is some cardinal number ℵα so that X has the same size as ℵα.

We will be focusing on ℵ1 in our discussion of Theorem 3.6. However, we’re going

to do an annoying thing that set theorists do and write ω1 rather than ℵ1. This

is more for psychological purposes: writing ω1 emphasizes to many people the order

structure on the set.

What you need to know about ω1 in this paper can be summarized in the following:

Fact 3.7. The following are standard facts about ω1.

1. ω1 is an uncountably infinite set.

2. ω1 is the least size of an uncountable set. Hence, if X is uncountable, there is

an injection f : ω1 → X.
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3. There is an order on ω1 (in fact, just the membership relation ∈), which we

denote by ◁, so that (ω1,◁) is a well-order.5

4. Hence, if α ∈ ω1, then there is a successor element to α in the ◁ ordering; we

write α + 1 for this element.

Now we can begin the proof of the weakening of Theorem 3.6:

Proof. (of a restricted version of Theorem 3.6) We first fix an injection f : ω1 → R
as guaranteed by Fact 3.7 (2). Let rα = f(α) for each α ∈ ω1. We will define a

2-coloring c on {rα : α ∈ ω1} (i.e., on the range of f) by comparing whether or not

the ordering on ω1 agrees with the ordering on R. To put it another way, color 1 will

mean that f preserves the order, and color 0 will mean that f reverses the order.

Consider, then, α, β ∈ ω1 with α ◁ β. So α is less than β in the ordering on ω1.

Since f is an injection, rα = f(α) ̸= f(β) = rβ. Recalling that rα and rβ are real

numbers, we conclude that either rα < rβ or rα > rβ. We will color {rα, rβ} with 1 if

rα < rβ (so that both α◁ β and rα < rβ) and color 0 otherwise.

Let’s look at some pictures. Figure 8 shows the case when f is order-preserving,

and hence we have color 1. By contrast, Figure 9 shows the case when f is order-

reversing and c gives color 0:

◁

<

α β

rα rβ

Figure 8: The picture when f is order-preserving

◁

<

α β

rβ rα

Figure 9: The picture when f is order-reversing

This defines our coloring and hopefully gives some intuition about what is happen-

ing. We now show that no uncountable subset of {rα : α < ω1} is homogeneous. Here

5Recall that a well-order is a linear order in which every non-empty set has a least element. The
natural numbers are an example of a well-order; the integers with the usual < are not a well-order.
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it is a bit easier to think about the indices: suppose we have H ⊂ ω1 uncountable

so that {rα : α ∈ H} is homogeneous for the coloring c. Consider first the case when

c takes constant value 1. We claim that the function taking α ∈ H to rα is order

preserving. Indeed, if α◁ β are in H, then c(rα, rβ) = 1, and hence rα < rβ.

Now we can get our contradiction. For each α ∈ H, let next(α) denote the next

element of H above α; this is one of the places where we’re using that ◁ is a well-order

on ω1. Note that if α ◁ β are both in H, then next(α) ⊴ β. For each α ∈ H, since

rα < rnext(α) are real numbers, we can apply the density of the rationals to choose a

rational number qα so that rα < qα < rnext(α). See Figure 10 for the picture.

◁

< <

α next(α)

rα rnext(α)qα

Figure 10: Pick a rational qα between rα and rnext(α)

We now claim that the function taking α ∈ H to qα (remember that qα is rational)

is an injection; note that since H is uncountable this contradicts that Q is countable!

Thus fix α◁β from H. Then we have the following: rα < qα < rnext(α) and rβ < qβ <

rnext(β). But next(α)⊴ β, and hence rnext(α) ≤ rβ. Therefore we have

qα < rnext(α) ≤ rβ < qβ,

and therefore qα < qβ.

This almost finishes the proof. The other case is that the coloring takes the

constant value 0. The only difference of difference in this case is that the ordering of

the real numbers rα gets reversed.

Let’s now pause and review where we are in the story. We’d like to prove theorems

that say: if you have a graph that has enough nodes, then you get a large homogeneous

set. We’ve seen the following:

1. for each finite k ≥ 3, there is a finite number n so that any graph with at least

n nodes has a k-sized homogeneous set (Theorem 1.4);

2. every infinite graph has an infinite homogeneous set (Theorem 2.6);
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3. it is not true that every uncountably infinite graph has an uncountably infinite

homogeneous set (Theorem 3.6).

One of a large number of remarkable results in this field is that there actually is

a large enough cardinal number κ so that any graph with at least κ-many nodes has

an ω1-sized homogeneous set. This result is due to Erdős and Rado.

Before we state this theorem, we need to go over a bit more set theory. You recall

from Theorem 3.4 that the real numbers R are uncountable. That is, there is no

bijection from N to R. It turns out that R is in bijection with the powerset of N,
which we denote by P(N):

Fact 3.8. There is a bijection from R to P(N).

Next, we want to see that P(N) is in bijection with all countable binary sequences,

i.e., all f : N → {0, 1}. The bijection associates a A ⊆ N with its characteristic

function χA : N → {0, 1} defined by χA(n) = 1 iff n ∈ A.

The point of all this is to explain the following: we will use 2ℵ0 to denote the size

of the powerset of N. This is therefore the size of R as well:

Fact 3.9. 2ℵ0 is the cardinality of R.

We’re almost ready to state the Erdős-Rado theorem. The final bit of notation

we need is the following: given a cardinal number κ, we use κ+ to denote the least

cardinal bigger than κ. Earlier when we were discussing the ℵ-sequence, we had ℵ0,

then ℵ1, ℵ2, etc. So we can use this “plus” notation to say, for example, that ℵ+
0 = ℵ1,

and so forth. Putting all of this together, we will write (2ℵ0)+ to denote the next

largest cardinal number above 2ℵ0 . Let’s state the theorem:

Theorem 3.10. (Erdős-Rado, 1956, [5]) Suppose that G is a graph with at least

(2ℵ0)+-many nodes. Then G has either a clique of size ω1 or an independent set of

size ω1.

Their theorem is more general, but this is enough for us to appreciate how inter-

esting this is. Remember that, without additional assumptions on the graph, (2ℵ0)+

is optimal, since there are graphs of size 2ℵ0 which do not have uncountable homoge-

neous sets (Theorem 3.6).

Section Summary 3.11. After reading this section, you should know that it is not

true that every uncountable graph/coloring has an uncountable homogeneous set.

However, if you consider graphs of size (2ℵ0)+ (the successor of the size of R), then
you are guaranteed an uncountable homogeneous set.
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4. From joy to befuddlement: Independence results

But not too fast. Having stated the Erdős-Rado theorem, we have now run into the

territory of independence results in set theory. In this section, we’re going to explain

what is meant by “independence results” and discuss the Continuum Hypothesis. We

will then use these ideas to highlight some of the odd features of the Erdős-Rado

theorem.

Many of the math folk I’ve talked to often get hung up on the notion of “inde-

pendence”. However, it is something that we’re all already intimately familiar with,

though perhaps not by that specific term. Let’s ease into the idea by considering

some examples.

Example 4.1. When you take an intro to abstract algebra course, you spend some

time defining what a group is. You then study different kinds of groups, naturally

enough. We distinguish, say, between Abelian and non-Abelian groups, the former

being commutative (like addition in the integers) and the latter failing to be commu-

tative (like multiplication of invertible matrices).

Consider, then, the statement “the group operation is commutative”, or in symbols

“∀x, y (x · y = y · x)”. Let’s denote this by φAb (“Ab” for “Abelian”). φAb is

independent of the axioms of group theory.

All that this means is that the basic, starting axioms of a group do not prove that

φAb is true and also do not prove that φAb is false. Why? Because there are groups

where φAb is true (namely, Abelian groups) and ones where it is false.

Definition 4.2. A statement φ is independent of a set A of axioms if A does not

prove that φ is true and if A does not prove that φ is false.

Here’s how this relates to set theory and Ramsey theory. In the previous section,

we introduced the symbol 2ℵ0 , noting that it is the size of R. Since R is uncountable,

we are justified in writing ℵ0 < 2ℵ0 . Notice, however, that this inequality does not

tell us how much bigger 2ℵ0 is than ℵ0. For instance, is it the very next size, ℵ1? Or

is it ℵ2? How large is the gap between ℵ0 and 2ℵ0? Put differently, can we find some

X ⊆ R so that

(a) X is uncountable but

(b) X has a smaller size than R?

We’re therefore asking the question: are there any sizes in between ℵ0 (countable

infinity) and 2ℵ0 (the size of R)?
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It turns out that this question cannot be decided just based upon the standard

axioms of set theory, namely the ZFC axiom system. Let’s make this a bit more

precise:

Definition 4.3. The Continuum Hypothesis, denoted CH, states that 2ℵ0 = ℵ1.

Thus the CH asserts that 2ℵ0 , the size of R, is the smallest possible size it could

possibly be, namely ℵ1. To say that the CH is independent of ZFC is to say both that

ZFC does not prove the CH and that it does not refute the CH. We begin with the

latter of these, a result due to Gödel.

Theorem 4.4. (Gödel, [9]) The CH is consistent with ZFC.

Gödel proved this theorem by building a model L, now known as Gödel’s con-

structible universe, in which the axioms of ZFC are true and in which the CH is also

true. L is constructed recursively, level-by-level. At each stage in the construction,

you only add the minimum possible amount of information, and this ensures that at

the end of the construction, you have only added what logically must exist in a model

of set theory.6 In other words, L contains only the bare minimum guaranteed by the

ZFC axioms, and hence it is the “smallest” model of set theory. A closer analysis of

L then shows that L only has ℵ1-many real numbers,7 and hence L satisfies the CH!

The other part of the independence result came later and is due to Cohen:

Theorem 4.5. (Cohen, [4]) ZFC does not prove that the CH is true. That is, there

is a model8 of ZFC in which 2ℵ0 = ℵ2, and hence, in that model, there are infinite

sizes in between ℵ0 (countable infinity) and 2ℵ0 (the size of R).

In fact, using forcing, you can create a model in which 2ℵ0 is any ℵα as long as

α does not have “countable cofinality”. Whatever this precisely means, we can make

models in which 2ℵ0 is ℵ3 or ℵ42 or ℵω+42 etc.

We’ll make a few comments about forcing, to give you a feel for the idea, before

connecting these ideas with the Erdős-Rado theorem. Cohen invented the technique

of forcing in order to prove the above theorem. Forcing involves starting with a

model of ZFC and then adding additional, new elements to the model. By adding

these new elements and then closing under the usual set-theoretic operations (like

pairing, union, etc.), we obtain a larger model of ZFC. However, while we preserve

6We’re talking transitive, well-founded models here.
7More precisely, L has a bijection from its set of real numbers to the thing that it thinks is ℵ1.
8We’re a bit imprecise here. It’s a relative consistency result that Cohen proved, namely: IF ZFC

is consistent, then so is ZFC with the negation of the CH. Mutatis mutandis for Gödel’s result.
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the base theory of ZFC in the larger model, in the process of extending the starting

model, we might change the truth values of other statements – like the CH!

As an analogy, consider the case of field extensions. In the field Q of rational

numbers, we don’t have a solution to the polynomial equation x2 − 2 = 0. That

is to say, the square root of 2 is not a rational number. However, we can build a

larger field, namely Q(
√
2) (read “Q adjoin root two”), which does have a solution

to x2 − 2 = 0. The elements of Q(
√
2) all look like q +

√
2r, where q and r are both

rational numbers. Note that Q and Q(
√
2) are both fields, so that the base theory of

“fields” is preserved when extending. However, the statement “∃x (x2 − 2 = 0)” is

false in Q and true in Q(
√
2).

This analogy therefore illustrates how, in mathematics, we can extend a given

object while preserving what kind of thing it is, but while also changing the truth

values of other statements of interest. Forcing does this in the context of models of

ZFC.

To return to the Erdős-Rado theorem, we know that any graph with at least

(2ℵ0)+-many nodes has an ω1-sized homogeneous set. But without the context of a

specific model of ZFC in which we have nailed down exactly what the value of 2ℵ0

is, this theorem doesn’t answer questions like the following: does any graph with at

least ℵ2-many nodes have an ω1-sized homogeneous set? What about with ℵ42-many

nodes?

For example, both of the following are consistent with ZFC:

1. It is consistent with ZFC that any graph with at least ℵ2-many nodes has a

homogeneous set of size ω1. This occurs in a model of the CH since then 2ℵ0 = ℵ1

and hence (2ℵ0)+ = (ℵ1)
+ = ℵ2. Then apply Erdős-Rado.

2. It is consistent with ZFC that any graph with at least ℵ42-many nodes has a

homogeneous set of size ω1, but not every graph of size ℵ41-many nodes has a

homogeneous set of size ω1. This occurs in a model in which 2ℵ0 = ℵ41, since

then (2ℵ0)+ = (ℵ41)
+ = ℵ42, and we can apply Erdős-Rado. However, because

2ℵ0 = ℵ41, we can create graphs in that model of size ℵ41 which don’t have

ω1-sized homogeneous sets (Theorem 3.6).

Section Summary 4.6. After reading this section, you should know what the Con-

tinuum Hypothesis says, what it means for a statement to be independent of a set of

axioms, and that the CH is independent of the axioms of ZFC set theory. You should

also know that applications of the Erdős-Rado theorem are sensitive to the value of

2ℵ0 in the model that you’re working in.
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5. From befuddlement to further progress: Topological colorings

So far the theme has been that by having a large enough graph (or by 2-coloring

a large enough set), we can get a large homogeneous set. The emphasis has been on

how many nodes we need in our graph in order to ensure a predetermined size for a

homogeneous set.

In this section, we will consider a different line of attack by coloring objects with

some additional structure. We’re therefore no longer just worried about cardinality,

but also about graphs (or 2-colorings) with additional features.

We will concern ourselves with so-called “topological colorings.” As the name

suggests, topological features play a role here. You don’t need to know any topology

to follow this; you only have to be able to draw circles!9

Suppose that we have an injective function f : R → R. Using Ramsey’s theorem

(Theorem 2.6), we can build an infinite subfunction f̄ ⊂ f so that either

1. f̄ is strictly increasing, OR

2. f̄ is strictly decreasing.

How? One way is to begin by defining the sequence (an : n ∈ N) by an := f(n).

We then apply Corollary 2.12 to generate a monotonic subsequence (ank
: k ∈ N).

Suppose for concreteness that the sequence is monotonically decreasing. Then k < l

implies ank
≥ anl

. But ank
= f(nk) ̸= f(nl) = anl

, where the equalities hold by

definition of the a-points and the inequality since f is injective and since nk ̸= nl.

Thus the sequence (ank
: k ∈ N) is in fact strictly decreasing.

Suppose, however, that we want to find an uncountable g ⊂ f so that either

1. g is strictly increasing, OR

2. g is strictly decreasing.

To achieve this, it seems that we’ll need to be able to get an uncountable homo-

geneous set for a coloring. But didn’t we already see that having even 2ℵ0 nodes is

not enough to get an uncountable homogeneous set? We did indeed. But that only

shows that some 2-coloring on R doesn’t work not that every 2-coloring doesn’t work.

So we ask the question: is there something different about the case of building an

uncountable monotonic subfunction of an injective function f : R → R? And yes,

there is! That’s what we turn to now.

Fix f : R → R which is injective, and as in, say, calculus, imagine the graph of f

(picture coming in a moment). I want to clearly get across the sense in which we have

9I hope this does make you want to learn some topology...
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a “topological” coloring. What you need to know about topology in the x, y plane

is that the most basic objects are going to be open discs whose centers are pairs of

rational numbers and whose radii are rational numbers.

(∗) One of the reasons this is significant is that the basic topological objects we’re

using are pretty simple, and there are only countably-many of them (since Q is

countable).

We will call these basic open sets.

What does this have to do with f? Let’s suppose that r < s and, for concreteness,

that f(r) < f(s) as well (remember that f(r) ̸= f(s), so f(r) > f(s) is the other

option). Now draw basic open sets around (r, f(f)) and (s, f(s)) so that all of the y-

coordinates of the first disc are well below all of the y-coordinates of the 2nd disc; see

Figure 11. Note in Figure 11 that on the y-axis, we have highlighted the projections

of these open discs so that you can see that the points in the lower disc are all well

below the points in the upper disc.

x

y

r s

f(s)

f(r)

Figure 11: Picking good open sets

Now here’s the fun part: suppose we take points (r′, f(r′)) and (s′, f(s′)) with

(r′, f(r′)) coming from the lower disc and (s′, f(s′)) coming from the upper disc, as

in Figure 12.
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x

y

r r′ s s′

f(s′)

f(s)

f(r)

f(r′)

Figure 12: Witnessing the value of the coloring by basic open sets

The key observation is that because of how the discs are arranged, f is order

preserving on {r′, s′}! In fact, f is order preserving on each of the following sets: {r, s},
{r, s′}, {r′, s}, and {r′, s′}. For example, f is order preserving on {r, s′} because r < s′

and f(r) < f(s′), and f is order preserving on {r′, s} because r′ < s and f(r′) < f(s).

The upshot is that the value of the coloring (recall color 1 means order preserving

and color 0 means order reversing) on two points (a, f(a)), (b, f(b)) from the graph of

f is entirely determined by how certain open discs are arranged. In this sense, this

coloring is a topological coloring. The additional structure that we have to work with

consists of these countably many “rational open discs” (i.e., open discs with rational

radius and rational center).

Now let’s ask the following:

Question 5.1. Is is true that for every injective f : R → R, there is an uncountable

monotonic f̄ ⊂ f?

However, here we again run into deep questions about independence from ZFC.

The statement “every injective f : R → R, has an uncountable monotonic f̄ ⊂ f” is

in fact independent of ZFC. First, we can see that its negation is consistent with ZFC

by the following theorem and corollary:
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Theorem 5.2. (Sierpinski, [14]) The CH implies that there is an f : R → R which

is not continuous on any uncountable A ⊆ R.

Corollary 5.3. The CH implies that there is an f : R → R which is not monotonic

on any uncountable A ⊆ R, and hence that the answer to Question 5.1 is ”No”.

Proof. Let f be as in Theorem 5.2. It is a standard fact from analysis that any

monotonic function g : B → R, with B ⊆ R, has at most a countable infinity of

points of discontinuity.

So suppose for a contradiction that f is monotonic on some uncountable A ⊆ R.
Let A0 ⊆ A be the countable set of points where f is discontinuous on A. Then

A \ A0 is still uncountable, and f is continuous on A \ A0. But this contradicts the

assumption that f is not continuous on any uncountable subset of R.

The upshot of this is that the statement under consideration is not provable in

ZFC, since it’s negation is consistent with ZFC.

Now we briefly comment on the other direction of the independence result. It

turns out that this statement is consistent with ZFC, and Abraham, Rubin, and

Shelah proved this in the mid-80’s:10

Theorem 5.4. (Abraham, Rubin, and Shelah, [2]) It is consistent with ZFC that

every injective f : R → R has an uncountable monotonic f̄ ⊂ f .

They build their model using the technique of “iterated forcing,” a detailed de-

scription of which is beyond the scope of this article. The rough idea is that they list

off all of the possible injective f : R → R and one-by-one, they use forcing to build a

larger model in which each has an uncountable, monotonic subfunction. By necessity

(Corollary 5.3), their model satisfies that the CH is false. In fact, in their model,

the value of the continuum is exactly ℵ2, i.e., their model satisfies that 2ℵ0 = ℵ2. It

remained an open problem for some time whether or not you could build a similar

model in which the continuum is even larger, say in which 2ℵ0 = ℵ3. Itay Neeman

and I solved this in the affirmative several years back:

Theorem 5.5. (Gilton, Neeman [8]) It is consistent with ZFC and with 2ℵ0 = ℵ3 that

every injective f : R → R has an uncountable monotonic f̄ ⊂ f .

This is a good point to stop the main thread and summarize what we’ve covered.

The goal of this article was to describe a few of the main themes in infinite Ramsey

10It was originally just Abraham and Shelah who proved this in [1]. The three-authored paper
proves a slightly better result, and this is the one that most people who are interested in this material
know about.
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theory. We saw the general idea of a “homogeneous set” in the context of graphs, or

equivalently, colorings. We then looked at Ramsey’s theorem, which guarantees that

we can find infinite homogeneous sets, but we saw that it is a very delicate matter to

achieve uncountable homogeneous sets. If we have large enough graphs (namely, of

size (2ℵ0)+), then we can guarantee the existence of uncountable homogeneous sets,

but no smaller cardinality will guarantee this. Nevertheless, once we impose additional

constraints, such as topological ones, on the colorings, we can obtain Ramsey-like

theorems which are consistent with ZFC, though they contradict the CH.

Of course, there is plenty more to say, both about the finite and infinite ver-

sions. (For one among many examples in the latter category, there is another kind of

topological coloring axiom due to Todorčević, [15].) Nevertheless, I hope that this is

enough to whet your appetite for Ramsey theory and set theory.
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[15] S. Todorčević, Partition Problems in Topology, Contemporary Mathematics,

vol. 84, American Mathematical Society, Providence, RI, 1989.

Thomas Gilton
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA

E-mail : tdg25@pitt.edu

© 2025 Gilton. This open-access article is licensed under CC BY 4.0.

Pittsburgh Interdiscip. Math. Rev. is managed by undergraduate students from the University of Pittsburgh and

Carnegie Mellon University, and is published electronically through the University of Pittsburgh Library System.

52

https://creativecommons.org/licenses/by/4.0/
https://www.library.pitt.edu/

	Introduction
	Infinite graphs
	Sadness and newfound joys: Uncountable infinities
	From joy to befuddlement: Independence results
	From befuddlement to further progress: Topological colorings
	Acknowledgements

