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Introduction

In many different ways, mathematics often amounts to finding and studying suit-

able algebraic structures on various collections of objects. In any first class in algebra,

one gets to know the bestiary of monoids, (abelian) groups, rings, modules, algebras,

etc. Algebraic structures are omnipresent and can also be viewed in a broader sense.

For instance, certain categories can be endowed with a commutative multiplicative

structure, making them into a symmetric monoidal category. The latter is a triple

(C,⊗,1C), where C is a category, ⊗ is a functor C × C → C, viewed as a mul-

tiplication operation, and 1C ∈ C is an object in C, representing a unit for the
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multiplication. We also require several axioms to be satisfied, for example associa-

tivity and commutativity of ⊗, and unitality of 1C with respect to ⊗. A concrete

example is the category of vector spaces over a field k, where ⊗ is defined as the

tensor product of vector spaces and 1C as the field k itself.

Viewing 1C as a functor from the one-point category to C (picking the object

1C ∈ C), both 1C and ⊗ are functors Cn → C for n = 0 and n = 2 respectively. We

want to think of such objects as operations taking n inputs and producing one output.

Our example illustrates that algebraic structures can usually be defined using a set of

operations, which should satisfy several axioms, also called relations. To neatly encode

the data of an abstract algebraic structure, viewed as a collection of operations and

relations, topologists invented devices called operads. Then, a particular instance of

this abstract structure, a realization of this operad, i.e. the data of an object endowed

with such operations that satisfy the required axioms, is called an algebra over this

operad. In our example, the abstract algebraic structure in question is that of an

associative, commutative, and unital multiplication, and a particular instance is the

data of (C,⊗,1C).

Pictorially, an operation with n inputs can be thought of as a tree with n “input

branches” and one “output branch”. Operations can be composed by plugging the

result of an operation as an input for another operation. This corresponds to tree

grafting. Also, permutation of the inputs yields an action of the symmetric group

Sn on operations in arity n, that is, with n inputs, which corresponds to twisting

the tree’s branches. Relations between operations can then be expressed in terms of

equalities of certain twisted and grafted trees. We will define operads more precisely

in Subsection 1.1, and make the connection with this botanical point of view.

As usual, topologists do not want to distinguish between homotopy equivalent

objects. Thus, one is led to consider algebraic structures where the relations be-

tween the operations are satisfied not on the nose, but rather up to homotopy. More

precisely, writing our relations as commutative diagrams, we do not require strict

commutativity of the latter anymore, but only that the composites in the diagram

are homotopic (and the homotopy between them is part of the data). Our main focus

will be on the algebraic structure of an associative, commutative, and unital multi-

plication, as described above. If the axioms are only required to be satisfied up to

coherent homotopies, such a structure is encoded by the so-called E∞-operads, which

we will introduce in Subsection 1.2. Actually, there exist various models of the latter,

but as we will see, they are all equivalent.

To spice things up, one can consider that everything is happening under the action

of a fixed finite group G; we enter the world of equivariant homotopy theory (we study

spaces with a G-action, G-equivariant maps, G-equivariant notions of operads, etc.).
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In this context, Blumberg and Hill defined in [BH15] N∞-operads, a more subtle

analog to E∞-operads. They do encode commutative unital multiplications in the

equivariant world but also take into account the finer structure of the group G that

acts, including the restriction of its action to its various subgroups. In particular,

N∞-operads encode the existence of certain transfer maps on their algebras (i.e. their

concrete realizations). To give a rough idea of what these are, consider a space X

with a G-action. Then, given subgroups K ≤ H ≤ G, there is an inclusion of spaces

of fixed points XH → XK . A transfer map is a map in the other direction. We

discuss N∞-operads in Subsection 1.3.

In contrast to the case of E∞-operads, as a consequence of the increased complex-

ity in the equivariant setting, there exist different homotopy types of N∞-operads,

depending on which transfer maps are required to exist. And thus, mathematicians

could not help but try to classify them. As we will see in Section 2, Blumberg and

Hill did the first major step in this direction by producing a fully faithful embedding

of the homotopy category of N∞-operads (i.e. a category of equivalence classes of

N∞-operads) into the partially ordered set (a.k.a. poset) of indexing systems. The

latter are certain objects related to the subgroups of G. Shortly after, this embedding

was proven to be an equivalence of categories. The poset of indexing systems was

also replaced by a simpler one, that of transfer systems in the poset of subgroups

of G. Transfer systems are certain well-behaved subposets, and form themselves a

poset under inclusion. This equivalence of categories establishes a beautiful corre-

spondence between homotopy-theoretic flavored objects on the one hand, and objects

of a combinatorial nature on the other hand.

Contemplating such an equivalence, one may wonder whether particular classes

of N∞-operads correspond to distinguished classes of transfer systems. This question

has been (partially) answered for two families of N∞-operads that “arise in nature”

([BH15, p22]): little disks operads (by [Rub21b]) and linear isometries operads (by

[Mac23]). This is where representation theory enters the picture, as both families

of N∞-operads are parametrized by certain real representations of G. In the case of

finite cyclic groups, these results give very simple combinatorial characterizations of

the transfer systems corresponding to such N∞-operads. For groups of small order,

it is even easy to draw all possibilities by hand (many examples can be found in

[Rub21b]). All of this will be discussed in Section 3.

This is not a research article but rather a survey designed to provide an elementary

introduction to the subject. Therefore, we ignore many details related to working in

the setting of model categories or ∞-categories rather than usual categories. Our

goal today is to embark on a little journey where equivariant homotopy theory meets

combinatorics and representation theory, guided by the story of the classification
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of N∞-operads. We hope the reader will appreciate the beauty of the connections

exhibited by the results we will state, and will take the time to read the technical

details if they wish to pursue the adventure. In this case, we provide in Section 4

some references to study the subject, and list of several recent developments and open

problems in the field.

Acknowledgements. I would like to thank the “Summer in the Lab” internship

program from the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland,

its donors, and the EPFL Laboratory for Topology and Neuroscience, for giving me

the occasion to study N∞-operads in the first place. In particular, all my gratitude

goes to professors K. Hess Bellwald and J. Scherer for their unwavering support and

guidance. Finally, this survey wouldn’t exist if it wasn’t for the friendly encourage-

ment of Lark Song, to whom I extend my heartfelt thanks.

1. What are N∞-operads?

In this section, we introduce the setup. We first define operads in general and

their algebras. We then specialize to the case of E∞-operads. Finally, we consider the

G-equivariant setting for G a (finite) fixed group, and define N∞-operads.

1.1. Topologists’ point of view on operations

In the introduction, operads were advertised as abstract devices encoding algebraic

structures. We will now give May’s original definition of an operad. It contains a lot

of technical axioms, but one should not be afraid of those, as they encode very natural

properties to ask for. We give a simple way to interpret them right after the definition.

In the sequel, we fix a symmetric monoidal category (C,⊗,1C) (readers unfamiliar

with this notion may just think about the rough definition given in the introduction).

We will mainly be interested in two examples: the category of topological spaces,

where ⊗ is the usual Cartesian product and 1C is the one-point space, and the

category of G-spaces, i.e. topological spaces with a G-action, where G is a fixed finite

group, the functor ⊗ is again the product and 1C is the one-point space with the

trivial G-action.

Definition 1.1. An operad O over C is a sequence (O(n))n∈N of objects in C, where

each O(n) is endowed with an action of the symmetric group Sn, together with a unit

1O : 1C → O(1), and maps ◦i : O(n) × O(m) → O(m + n − 1) called composition

maps, satisfying:
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• Associativity: For all n,m, k ∈ N, j ≤ n and i ≤ m+ n− 1, we require:

(◦i) ◦ (◦j ⊗ id) =


(◦j+k−1) ◦ (◦i ⊗ id) ◦ (id ⊗BOm,Ok

) if 1 ≤ i ≤ j − 1

(◦j) ◦ (id ⊗ ◦i−j+1) if j ≤ i ≤ m+ j − 1

(◦j) ◦ (◦i−m+1 ⊗ id) ◦ (id ⊗BOm,Ok
) if m+ j ≤ i

where B is the braiding in (C,⊗,1C) (the natural isomorphism between ⊗ and

its precomposition by the swap map, witnessing the commutativity of ⊗). For

example, the first case amounts to the commutativity of the diagram

O(n)⊗O(m)⊗O(k) O(n)⊗O(k)⊗O(m) O(n+ k − 1)⊗O(m)

O(n+m− 1)⊗O(k) O(n+m+ k − 1).

◦j⊗id

◦i

id⊗B ◦i⊗id

◦j+k−1

• Equivariance: For all n,m ∈ N, i ≤ n, σ ∈ Sn and τ ∈ Sm, the diagram

O(n)⊗O(m) O(n+m− 1)

O(n)⊗O(m) O(n+m− 1)

σ⊗τ

◦i

◦i

(σ◦iτ)

must commute. Here σ ◦i τ ∈ Sn+m−1 is obtained by replacing the “i” entry in σ

by τ , when both permutations are written as sequences (σ(1), σ(2), . . . , σ(n)) and

(τ(1), τ(2), . . . , τ(m)), and shifting the indices in τ by i− 1, and the entries j > i

in σ by m− 1. For instance, if n = 3, m = 7, we have (1, 3, 2) ◦2 (4, 5) = (1, 9, 5, 6).

• Unit: the composition O(n) ∼= 1C ⊗ O(n)
1O⊗id−−−−→ O(1) ⊗ O(n) ◦1−−→ O(n) is the

identity, and similarly for O(n)⊗ 1C .

The intuition behind the definition is the following: thinking of O as representing

an abstract algebraic structure, O(n) represents the collection of operations in arity n

(i.e. with n inputs) needed to define this structure, the functor 1O picks the identity

operation in O(1), and the compositions ◦i correspond to plugging in the output of

the second operation into the i-th input of the first one.

If one represents an n-ary operation by a tree, with n inputs branches at the

bottom and one output branch at the top, then composition corresponds to tree
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grafting. We can then illustrate the associativity axiom in the case i < j as follows:

•

• •

• • •

• • • • •

• i • j •

f ∈ O(n)

g ∈ O(k) h ∈ O(m)

◦i ◦j

The axiom says that the order in which we graft g and h does not matter. Indeed,

i < j means we are not grafting g onto the new inputs of f ◦j h corresponding to h,

or vice versa. The other axioms have similar interpretations in terms of trees, and

the formulas simply ensure that the intuition one obtains from trees is correct.

Example 1.2. Let V be vector space over a field k. An example of an operad over

the symmetric monoidal category of k-vector spaces (with the usual tensor product

and unit k) is the endomorphism operad EndV . For all n ∈ N, EndV (n) is defined as

Hom(V ⊗n, V ) the vector space of linear maps V ⊗n → V (multilinear maps). Then

the symmetric group Sn acts by permutations on V ⊗n (that is, for f : V ⊗n → V

and σ ∈ Sn, let (σ · f)(v1 ⊗ · · · ⊗ vn) = f(vσ−1(1) ⊗ · · · ⊗ vσ−1(n))). The composition

f ◦i g of two multilinear maps corresponds to plugging in the result of the second

one g(·, . . . , ·) into the i-th entry of the first one f(·, . . . , ·), to obtain a new map

f(·, . . . , ·, g(·, . . . , ·), ·, . . . , ·). The endomorphism operad can be defined in any sym-

metric monoidal category C with a suitable notion of Hom-functor, in particular for

a subcategory of “nice” topological spaces (with Hom(X, Y ) the set of continuous

maps X → Y with the compact-open topology).

Definition 1.3. A morphism of operads between O and O′ is a collection of mor-

phisms {fn : O(n) → O′(n)}n∈N in C, where fn is Sn-equivariant for all n ∈ N, and
these morphisms are compatible with the units and the compositions (i.e. f1◦1O = 1′

O
and fm+n−1 ◦ (◦Oi ) = (◦O′

i ) ◦ (fn ⊗ fm) for all n,m ∈ N and 1 ≤ i ≤ n).

Operads encode abstract operations and the axioms they satisfy. Their concrete

realizations, i.e. objects endowed with the data of such operations, are called algebras

over this operad. The slogan is: “Algebras are to operads what representations are to

groups”. If C is a category of spaces or sets, the idea is to associate to each element

of O(n) an n-ary operation on a space or set A, i.e. a map An → A.

Definition 1.4. Assume that the endomorphism operad can be defined in C (see

Example 1.2). Let O be an operad over C. An algebra over O, or O-algebra, is an
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object A ∈ C endowed with a morphism of operads O → EndA. Equivalently, it is an

object A ∈ C with the data of a family of morphisms (γn : O(n) ⊗ A⊗n → A)n∈N in

C, compatible with 1O and ◦i, such that γn is Sn-equivariant (when A has the trivial

action and A⊗n the action by permutations).

Example 1.5. Let Comm be the operad given by the constant sequence (1C)n∈N,

with trivial composition maps and Sn-action. Then, the Comm-algebras are exactly

the commutative monoid objects in C. Indeed, let M ∈ C be a Comm-algebra

with structure maps {γn}n∈N. Then µ := γ2 : 1C ⊗M ⊗M ∼= M ⊗M → M and

η := γ0 : 1C → M define the multiplication and the unit of a commutative monoid

structure on M . For example, note that by Sn-equivariance, we have γ2(id⊗B) = γ2,

i.e. µB = µ, where B is the braiding of C (the swap map on M ⊗ M), so µ is

commutative. Conversely, given a commutative monoid (M,µ, η) in C, we have maps

Comm(n)⊗M⊗n ∼= M⊗n →M by iterating the multiplications µ when n > 0 (order

does not matter, by the associativity and commutativity of ⊗ and µ) and η when

n = 0. This defines a Comm-algebra structure on M . In particular, if C is the

category of small categories, with ⊗ the product and 1C the one-point category, then

a Comm-algebra in C is a symmetric monoidal category.

Example 1.6. The simplex operad Simp is an operad over the symmetric monoidal

category of (nice) topological spaces (Top,×, {∗}). Let Simp(n) be the standard

(n − 1)-simplex, i.e.
{
(x0, . . . , xn−1) ∈ Rn | xi ≥ 0,

∑n−1
i=0 xi = 1

}
. The compositions

are the maps

◦i : Simp(n)× Simp(m) −→ Simp(m+ n− 1)

(x, y) 7−→ (x0, . . . , xi−2, xi−1y0, . . . , xi−1ym−1, xi, . . . , xn−1).

The group Sn acts by permutation of the coordinates. Any convex subset X ⊆ Rm

has a Simp-algebra structure, given by convex combinations (to each x ∈ Simp(n)

we associate the map Xn −→ X, (v0, . . . , vn−1) 7−→
∑n−1

i=0 xivi). In particular, the

half-line R≥0 := [0,+∞[ is a Simp-algebra. Viewing R≥0 as a single object category

with one morphism for each element in R≥0 (composition is given by addition), we can

consider internal Simp-algebras. Roughly speaking, the latter are like Simp-algebras,

but in this new category R≥0. They are also defined as a collection of n-ary operations.

Fun fact: they correspond exactly to the constant multiples of the Shannon entropy,

and further interesting connections can be made (see [Lei11]).

1.2. Relaxing the relations between the operations : E∞-operads

If O is an operad, the data of an O-algebra structure on a given object involves the

data of structure maps satisfying certain relations, which can be written in the form
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of equalities of various compositions of morphisms. A general principle in homotopy

theory is to relax this equality condition and ask instead for homotopies (“continu-

ous deformations”) between the maps involved (and also remember the data of these

homotopies). Applying this to the operad Comm from Example 1.5, we are look-

ing for a notion of a multiplication that is unital, commutative, and associative up

to homotopy only. For instance, instead of requiring that the multiplication map

is isomorphic to its precomposition by the swap map, we only require them to be

homotopy equivalent. This notion is encoded by E∞-operads.

Definition 1.7 ([May72]). An E∞-operad is an operad O over Top such that for all

n ∈ N, O(n) is contractible (homotopy equivalent to a point) and the action of Sn on

it is free. An E∞-space is an algebra over any E∞-operad over Top.

Viewing O(n) as a “space of n-ary operations”, the contractibility stands for

the fact that up to homotopy, we have essentially one single operation in this arity,

representing the multiplication of n elements in any order.

Remark 1.8. Any Comm-algebra in Top (see Example 1.5) is also an E∞-space. In-

deed, intuitively, a Comm-algebra structure encodes a strictly associative and commu-

tative multiplication, which is, in particular, a homotopy associative and commutative

multiplication, and thus induces the structure of an E∞-algebra.

All E∞-operads are equivalent (in a sense to be made precise) as topological op-

erads to the operad Comm of Example 1.5. However, the added requirement that

the actions of the symmetric groups are free makes E∞-operads into a special class

of “replacements” for the Comm-operad, sometimes called Σ-cofibrant resolutions of

the latter. In this sense, there is only one equivalence class of E∞-operads. We have

a stronger result:

Theorem 1.9 ([May72]). If E and E ′ are two E∞-operads, the (homotopy) categories

of E-algebras and E ′-algebras are equivalent. In particular, the category of E∞-spaces

is well-defined.

We may therefore choose our favorite model of E∞-operad. The most common one

is probably the operad of little cubes. It is obtained as the infinite “union” (actually,

colimit) over k ≥ 1 of the operads of little k-cubes, which we now define.

Definition 1.10. Let k ∈ N+ := {1, 2, . . . }. The operad of little k-cubes Ck over Top is

given by Ck(0) = {∗} and for n ≥ 1, Ck(n) is the space of n-uples of disjoint rectilinear
embeddings of the k-dimensional unit cube into itself. Explicitly, an element of Ck(n)
is a n-uple (f1, . . . , fn) of maps fi : Ik → Ik where I = [0, 1] is the unit interval,
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such that fi(int(I
k)) ∩ fj(int(I

k)) = ∅ ∀i ̸= j, and for all i ≤ n, fi is of the form

x 7→ (ai,1x1 + bi,1, . . . , ai,nxn + bi,n) with ai,j ∈ R>0, bi,j ∈ R≥0. This space is endowed

with the Euclidean topology when we view the coordinates ai,j and bi,j in R2nk. Then

Sn acts by permutation of the embeddings in an n-uple. Let

◦i : Ck(n)× Ck(m) −→ Ck(m+ n− 1)

((f1, . . . , fn), (g1, . . . , gm)) 7−→ (f1, . . . , fi−1, fi ◦ g1, . . . , fi ◦ gm, fi+1, . . . , fn).

An element of Ck(n) can be viewed as a k-cube with n smaller ones inside, labeled

from 1 to n. Here is an example of composition in the case k = 2:

=◦3
1

2

3

1

2

1

2

3
4

∈ C2(3) ∈ C2(3) ∈ C2(4)

Definition 1.11. The operad of little cubes C∞ is given by C∞(n) = colimk∈N Ck(n)
for all n ∈ N. Readers unfamiliar with category theory may view the colimit “colim”

as a union, where Ck(n) is viewed as a subobject of Ck+1(n) via the map adding the

identity on the last component of each embedding (a k-uple of maps (f1, . . . , fk) is

sent to (f1 × idI , . . . , fk × idI)). For instance, for k = 1, this corresponds to taking

the vertical strips corresponding to each interval.

Proposition 1.12 ([May72]). The operad C∞ is an E∞-operad.

Sketch of proof. The action of Sn on Ck(n) for some k, n ∈ N being by relabeling the

little k-cubes, it is free. Since the maps Ck(n)→ Ck+1(n) are actual embeddings, their

colimit can be expressed as an infinite union, and thus the action of Sn on C∞(n) is

also free. To prove that C∞(n) is contractible, May shows that Ck(j) is homotopy

equivalent to F (Rk, j) the j-th configuration space in Rk (the space of j-uples of

distinct points in Rk). The latter is not contractible, but as k goes to infinity, its

connectivity increases (i.e. more and more homotopy groups in low degrees vanish).

Passing to the colimit, one obtains that the homotopy groups of C∞(n) are all trivial

(it is weakly contractible). One can show that C∞(n) is homotopy equivalent to a

CW-complex, therefore it is also contractible.

May’s recognition theorem is probably the most famous use of E∞-operads.
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Theorem 1.13 ([May72]). For 1 ≤ n ≤ ∞, a connected space X is an n-fold loop

space (see Definition 1.15) if and only if it admits the structure of a Cn-algebra.

Remark 1.14. In the case n =∞, by Proposition 1.12, C∞ is an E∞-operad. We have

also seen that all E∞-operads are equivalent. Thus, we may replace “C∞-algebra” in

the theorem with “E∞-space”. In particular, since connected commutative monoids

in Top (for example, the circle S1) are Comm-algebras by Remark 1.8, they are also

E∞-algebras and thus are infinite loop spaces.

Definition 1.15. The loop space functor Ω : Top∗ → Top∗ sends a pointed space X

to the space of continuous pointed maps S1 → X endowed with the compact open

topology. Then ΩkX can be viewed as the space of pointed maps Sk → X. We say

that a pointed space X is an n-fold loop space for n ∈ N+ if there exists a pointed

space Y such that X is weakly equivalent to ΩnY , and that X is an infinite loop space

if there exists a sequence of pointed spaces (Yn)n∈N with Y0 = X and pointed weak

equivalences Yn −→∼ ΩYn+1 for all n ∈ N.

Remark 1.16. The “only if” direction in Theorem 1.13 is not too hard to prove

(and the converse is much harder). Indeed, if (X, x0) is a pointed space, to define

a Ck-algebra structure on ΩkX, we need maps Ck(n) × (ΩkX)n → ΩkX. Given

(f, g) = ((fi)i≤n, (gi)i≤n) ∈ Ck(n)× (ΩkX)n, consider the composition

Ik −→ Ik/(Ik \ (f1(I̊k) ∪ · · · ∪ fn(I̊k))) −−−→∼
n∨

i=1

Sk
∨n

i=1 gi−−−−→ X.

This induces a map Sk → X by collapsing the boundary in Ik. If k = 1, for

little intervals [a1, b1], . . . [an, bn], we obtain the following concatenation of the loops

g1, . . . , gn: setting b0 = 0, from time bi−1 to ai we stay at the base point, and from

time ai to bi we follow the (reparameterization of the) loop gi, for all i ≥ 1. Since

concatenation of loops is associative and reparameterization-invariant up to homo-

topy, one might want to identify all n-uples of embeddings with the one giving a

regular partition of I into n intervals. We would then only have n! points in each

arity; one for each labeling of the intervals. This is called the Assoc operad and is

simply the non-commutative version of Comm. But the operad C1 has more data. As

k increases, there are more and more levels of “homotopies between homotopies etc”

relating the different ways of permuting the little k-cubes embedded inside the bigger

one, encoding “more and more commutativity up to homotopy”. This is the whole

point of having an E∞ operad: it is equivalent to Comm but encodes the properties

up to homotopy only.
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1.3. When group actions enter the picture: N∞-operads

From now on, unless stated otherwise, G is a fixed finite group. In [BH15], Blum-

berg and Hill generalize the theory of E∞-operads to the G-equivariant setting, namely

where everything is considered under the action of G. A first way of generalizing Def-

inition 1.7 would simply be to replace the category of spaces, Top, with that of

G-spaces, TopG. Instead, they define the richer notion of N∞-operad, which takes

into account the structure of G and its action at a finer level, as we will now see.

Definition 1.17. An N∞-operad is an operad O over TopG such that:

1. For all n ∈ N, the (G × Sn)-action on O(n) admits a G-fixed point, and the

restriction of the action to Sn is free.

2. For any subgroup Γ ≤ G × Sn, the space O(n)Γ of Γ-fixed points is either empty

or contractible (as a topological space, not necessarily equivariantly).

Remark 1.18. In particular, the composition maps and unit for O are G-equivariant.

Since an N∞-operad is more than just an E∞-operad in G-spaces, its algebras

are endowed with additional structure, namely transfer maps. Which transfers are

supplied is parametrized by the data of which spaces of fixed points in the operad are

contractible, rather than empty. This data distinguishes particular inclusions in the

poset of subgroups of G, i.e. maps in the poset, called admissible relations.

Definition 1.19. Let H ≤ G be a subgroup and T a finite H-set. Choose an

enumeration of T as {t1, . . . , t|T |}. The graph subgroup associated with T is (the

conjugacy class of) the subgroup ΓT ≤ G× S|T | given by the graph of the morphism

H → S|T |, h 7→ σh, such that h · ti = tσh(i) for all i ≤ |T |. If T = H/K for some

K ≤ H, with H acting by multiplication on the left, we write ΓT = ΓH,K . This is

well-defined under changing the enumeration of T because any relabeling of T yields

a subgroup conjugate to ΓT .

Definition 1.20. Let O be an N∞-operad and H ≤ G. A finite H-set T is called

admissible if O(|T |)ΓT ̸= ∅ (this only depends on the conjugacy class of ΓT ). Given

K ≤ H ≤ G, the relation K ≤ H, also viewed as a morphism from K to H in the

poset of subgroups of G, is called admissible if H/K is an admissible H-set for O.

Theorem 1.21 ([BH15], [Rub21b, Rmk 3.5]). Let X be an algebra over an N∞-operad

O, and let K ≤ H ≤ G be subgroups, with K ≤ H an admissible relation for O. Then,
the O-algebra structure of X provides contractible spaces of internal transfer maps of

H-spaces XK −→ XH and external transfer maps of G-spaces G×H X×H/K −→ X.

11
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Remark 1.22. The space of all maps XK → XH is not contractible in general. The

above result only states that there are essentially unique choices of internal transfer

maps supplied by the O-algebra structure, and similarly for the external transfers.

Weak equivalences between N∞-operads should also respect the finer structure of

all spaces of fixed points. Otherwise, they would amount only to weak equivalences

between the underlying topological E∞-operads. But all categories of algebras over

such operads are equivalent, whereas, for different N∞-operads, the algebras do not

look quite the same due to the existence of various transfer maps.

Definition 1.23. A morphism of operads in G-spaces f : O → O′ between two

N∞-operads is an equivalence if the induced maps fΓ : O(n)Γ → O′(n)Γ are weak

homotopy equivalences between the underlying topological spaces for all subgroups

Γ ≤ G× Sn and n ∈ N.

This notion of equivalence is sensible because equivalent N∞-operads O and O′

have equivalent categories of algebras (provided that their G-spaces of operations

O(n) and O′(n) are nice enough for all n ∈ N, see [BH15, Thm A.3]).

2. Classifying N∞-operads by combinatorial objects

We briefly mentioned in the previous subsection the existence of several non-

equivalent classes of N∞-operads. By formally inverting the equivalences in the

category of N∞-operads, one obtains the homotopy category of N∞-operads, i.e. a

category of equivalence classes of N∞-operads. Then, “classifying N∞-operads up to

homotopy” can be understood as “finding an equivalent explicit description of the

homotopy category of N∞-operads”. This is what this section is dedicated to.

In [BH15], Blumberg and Hill partially classified N∞-operads by constructing a

fully faithful embedding of the homotopy category of N∞-operads into the poset

category of indexing systems. The latter are certain posets expressed in terms of

categories of H-sets when H varies among the subgroups of G. The classification was

independently completed by Bonventre and Pereira ([BP21]), Gutiérrez and White

([GW18]), and Rubin ([Rub21a]), who proved that this embedding was an equivalence

of categories. A refined version was proven in [Rub21b] and [BBR21]. More precisely,

the poset of indexing systems was replaced by the equivalent poset of transfer systems.

The latter can be seen as generating data for the former; they are thus “smaller”

objects, easier to deal with. In this subsection, we will focus on the approach in

[Rub21b] because it is more combinatorial and elementary.

Definition 2.1. A transfer system on G is a subposet (T ,→) of the poset of sub-

groups of G with respect to inclusion (Sub(G),≤), such that

12
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1. It contains all the subgroups of G.

2. It is closed under conjugation: if K → H then gKg−1 → gHg−1 for all g ∈ G.

3. It is closed under restriction: if K → H and M ≤ H then K ∩M →M .

The set of transfer systems on G forms itself a poset Tr(G) with respect to inclusion.

When G is abelian, condition 2 holds trivially, and the definition no longer uses

the group structure. It becomes a purely combinatorial notion that can be generalized

to any lattice (replacing the intersection by the meet operation).

Rubin uses in his proof a discrete analog of N∞-operads.

Definition 2.2. An N -operad O is an operad in G-sets such that the action of Sn

on O(n) is free for all n ∈ N, and the fixed points O(0)G and O(2)G are non-empty.

N -operads are a good model for N∞-operads, in the sense that their homotopy

category is equivalent to that of N∞-operads, and one can prove that they have good

properties with respect to the functor C from Theorem 2.3 (see [Rub19a]).

Theorem 2.3 ([BH15, Thm 3.24], and e.g. [Rub21a]). There is an equivalence

C : Ho(N∞-Op) −→ Tr(G)

between the homotopy category of N∞-operads and the poset of transfer systems on

G. The functor C sends an N∞-operad O to the transfer system → where K → H if

and only K ≤ H and the relation K ≤ H is admissible for O (Definition 1.20).

Sketch of proof. One first shows that the functor C is well-defined, i.e. takes values in
transfer systems on G and sends equivalent N∞-operads to the same transfer system.

The latter follows from Definition 1.23. The former is longish but easy to check by

chasing the axioms in Definitions 1.17 and 2.1; one has to define certain explicit fixed

points by hand. Now, to show that C is an equivalence of categories, we show it is

fully faithful and essentially surjective.

Step 1: the functor C is full. Assume T = C(N ) and T ′ = C(N ′) for N∞-operads

N ,N ′, and there is a map from T to T ′ in the poset Tr(G), i.e. T ⊆ T ′. We have

to show that there is a map N → N ′ in the homotopy category. This uses a trick of

May, also used in [BH15]: consider the zigzag of maps N ← N ×N ′ → N ′.

We have C(N ×N ′) = C(N ) ∩ C(N ′). Indeed, the relation K ≤ H is admissible

for the product N ×N ′ if and only if

((N ×N ′)([H : K]))ΓH,K = (N ([H : K])×N ′([H : K]))ΓH,K

= (N ([H : K]))ΓH,K × (N ′([H : K]))ΓH,K ̸= ∅,

13
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i.e. if and only if both factors are non-empty. This happens exactly when H/K is

admissible for both N and N ′, i.e. when K ≤ H is in both T and T ′.

We now claim that the condition T ⊆ T ′ implies that N × N ′ → N is a weak

equivalence. To prove this, it suffices to check that the fixed points of the left-hand

side are contractible if and only if they are contractible on the right-hand side, since

a map between contractible spaces is necessarily a weak equivalence. Let n ∈ N
and Γ ≤ G × Sn. If Γ intersects Sn non-trivially, the fixed points on both sides are

empty since Sn acts freely. If Γ ∩ Sn = {0}, it is easy to prove that Γ is a graph

subgroup. Then, if (N × N ′)(n)Γ = N (n)Γ × N ′(n)Γ ̸= ∅, in particular N (n)Γ is

non-empty, so it is contractible. Conversely, if N (n)Γ ̸= ∅, let H be the projection of

Γ onto G. Then the H-set structure on {1, . . . , n} associated with Γ makes each orbit

(which is isomorphic as an H-set to H/Ki for some Ki ≤ H, i ≤ k) an admissible

set for N , and hence for N ′ too, since T ⊆ T ′. Therefore, for all i ≤ k, there

exists xi ∈ N ′([H : Ki])
ΓH,Ki ̸= ∅. Let y ∈ N ′(k)G. Plugging in the operation

xi in the i-th input of y for all i ≤ k, we obtain a new operation z ∈ N ′(n), since

[H : K1]+· · ·+[H : Kk] = n. Furthermore, z is a Γ-fixed point because the projection

of Γ on Sn consists only of shuffles within the orbits, by definition. Thus N ′(n)Γ ̸= ∅
and (N ×N ′)(n)Γ ̸= ∅, as desired.

Since weak equivalences are invertible in the homotopy category, the zigzag of

maps mentioned above becomes an actual map N → N ′, as needed.

Step 2: C is faithful. Since the target is a poset, it suffices to show that every

class of morphisms between given objects in Ho(N∞-Op) is empty or consists of a

single point. We skip this harder part of the proof, which uses a structure of model

category on N∞-Op to have an explicit description of the homotopy category.

Step 3: C is essentially surjective. Let T be a transfer system on G. We want to

build an N∞-operad N with C(N ) = T . It will be constructed as a classifying space

of a free N -operad (Definition 2.2).

Firstly, for all n ∈ N, let S̃T (n) be the G-set
∐

(K→H)∈T , [H:K]=n(G × Sn)/ΓH,K .

Let ST (n) = S̃T (n) if n ̸= 0, 2, or ST (n) = S̃T (n)⨿ (G× Sn)/(G× {id}) if n = 0, 2.

Then, take the free operad T(ST ) in G-sets over the collection (ST (n))n∈N. It

can be explicitly described as follows: T(ST )(n) is the set of equivalence classes of

n-trees, where each vertex is decorated by an element of ST (n). Here, an n-tree (see

the illustration below) is defined as a finite connected directed graph such that any

vertex v has at most one outgoing edge, its ingoing edges are numbered (this labeling

is part of the data), and there is one arrow with no vertex at the end, and n vertices

without ingoing edges, called tails, numbered from 1 to n. The equivalence relation

identifies trees where the same permutation has been applied to both the labels of the

ingoing edges of a vertex and the operation decorating the vertex itself. For example,

14
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if f, g, h ∈ ST (2), the following 2-trees with labeled vertices are equivalent:

Finally, turn T(ST ) into an operad in G-spaces by first taking the cofree category,

then the nerve, and finally the geometric realization, namely the composition

E : Set Cat SSet Top
cofree

forgetful

nerve

realization

|·|

singular set

⊣ ⊣ ⊣

Let N := E(T(ST )). We have to check that N is indeed an N∞-operad, and that

C(N ) = T . For N to be an operad in G-spaces, one has to show that the functor E

respects the symmetric monoidal structures, namely the products, the units, and the

compatibilities between them. To check that N is N∞, the crucial point is that the

functor E “creates contractible spaces, by attaching cells to kill homotopy”. Indeed,

the cofree construction adds an edge between any (ordered) pair of points, the nerve

takes all possible paths, and the geometric realization glues cells in every dimension

“in all possible ways”. In view of the definition of an N∞-operad, one then has

to study how E interacts with fixed points and homotopies, and one can reduce to

showing the corresponding properties for T(ST ). More precisely, using the explicit

description of the free operad, one shows the following:

Claim: The operad T(ST ) has a free action of the symmetric groups in each arity,

a G-fixed unit, and T(ST )(n)
G×{id} ̸= ∅ for all n ∈ N. Moreover, for all K ≤ H ≤ G,

we have (K ≤ H) ∈ T if and only if T(ST )([H : K])ΓH,K ̸= ∅.

3. Even more combinatorics: particular cases of the classification

As mentioned in the introduction, one might try to restrict the equivalence of

Theorem 2.3 to particular families of N∞-operads, and then determine what are the
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corresponding transfer systems. In this section, we will consider two families of N∞-

operads for which the question has been answered in an interesting way.

3.1. Little disks operads

The first family of N∞-operads we will consider is that of little disks operads

(strongly inspired, as the name indicates, from the little cubes operad from Subsection

1.2). It is parametrized by a specific type of representations of G:

Definition 3.1. A G-universe U is a countably infinite-dimensional real represen-

tation of G of the form
⊕

N(Rtriv ⊕ V1 ⊕ · · · ⊕ Vk), with V1, . . . , Vk irreducible finite-

dimensional real representations of G by linear isometries (we implicitly choose iso-

morphisms Vi
∼= RdimVi , and this induces an inner product on each of the Vi’s).

Definition 3.2. Let U be a G-universe. The operad of little disks D(U) is defined

in arity n ∈ N by D(U)(n) =
⋃

V≤U DV (U)(n), where the union (colimit, actually)

is indexed by finite-dimensional subrepresentations V ≤ U , and DV (U)(n) is the

space of n-uples of affine embeddings from the unit disk D(V ) ⊆ V into itself, with

disjoint interiors. The composition maps and action of Sn are as in Definition 1.10,

and G acts by conjugation on each embedding in an n-uple (given an embedding

f : D(V )→ D(V ), let (g · f)(v) = g · (f(g−1v)) for all v ∈ D(V ) and g ∈ G).

Remark 3.3. As Blumberg and Hill write in [BH15], little disks operads do not have

very good topological properties, so one usually considers a “thickening” of those,

called Steiner operads. However, by [BH15, Prop. 3.13], given a G-universe U , the
associated Steiner and little disks operads are equivalent as N∞-operads.

Theorem 3.4 ([Rub21b, Thm 4.11]). Let G be a finite abelian group and (T ,→)

a transfer system on G. Then (T ,→) corresponds to a little disks operad under the

equivalence of Theorem 2.3 if and only if it is generated by relations of the form

H ≤ G where G/H is cyclic.

Remark 3.5. In the case of cyclic groups, the theorem simplifies further because any

quotient by a subgroup is cyclic. Thus, a transfer system on a cyclic group is realized

by a little disks operad if and only if it is generated by the relations with target G

that it contains. Such a transfer system is called cosaturated.

To prove Theorem 3.4, we need a characterization of the transfer system associated

with a little disks operad:

Theorem 3.6 ([BH15, Thm 4.19]). Let U be a G-universe, and let K ≤ H ≤ G.

Then, K ≤ H is admissible in C(D(U)) if and only if there is an H-equivariant

embedding H/K → ResGH(U) (where ResGH denotes restriction of representations).
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Proof. Write H/K = {h1K, . . . , hnK}. If H/K is admissible for D(U), then there

exists x ∈ D(U)(n)ΓH,K . The latter being defined as a colimit, we may find a finite-

dimensional subrepresentation V ≤ U with x = (f1, . . . , fn) ∈ DV (U)(n), where

fi : D(V )→ D(V ) is an affine embedding for all i ≤ n. Consider the map H/K → U ,
hiK 7→ fi(0). Since the images of the interiors of the disks are disjoint, this map is

injective. It is H-equivariant since for any h ∈ H, h · hiK = hσh(i)K by definition,

and h · (fi(0)) = ((h−1, σh−1) · (f1, . . . fn))σh(i)(h
−1 · 0) = (f1, . . . , fn)σh(i)(0) = fσh(i).

Conversely, if such an embedding f : H/K → U exists, we have to find a ΓH,K-

fixed point in D(U)(n). Up to scaling, we may assume that the image of f is included

in the interior of the unit disk in U . Let ε > 0 be a lower bound on the distances

between two points in the image of H/K, and the distances between each point and

the boundary of the unit disk. Let W be the subrepresentation generated by the

image of H/K. It is finite-dimensional because G is finite and H/K too. For each

i ≤ n, consider the disk of radius ε/4 in W around the image of hiK in U . Let

fi be the affine embedding of D(W ) as this disk (i.e. x 7→ f(hiK) + (ε/4)x). Then

(f1, . . . , fn) ∈ DW (U)(n), and we want to check that it is a ΓH,K-fixed point. So we

have to prove that for any h ∈ H, i ≤ n and x ∈ W , we have h−1 ·fσh(i)(h ·x) = fi(x).

Since h acts by linear isometries, we have

h−1 · ((ε/4)(h · x) + f(hσh(i)K)) = h−1 · h · ((ε/4)x+ h−1 · f(hσh(i)K))

= (ε/4)x+ f(hiK) = fi(x),

as needed.

Proposition 3.7 ([Rub21b, Prop. 4.5]). Let U =
⊕

i∈I Vi be a G-universe, where I is

an infinite set of indices and Vi is an irreducible real linear isometric representation

of G for all i ∈ I. Then C(D(U)) is generated as a transfer system by
⋃

i∈I Orb(Vi),

where for V a G-representation, we define the set of relations:

Orb(V ) = {K ≤ G | K ̸= G and there is a G-equivariant embedding G/K ↪−→ V }.

Proof. Let (T ,→) = C(D(U)) and let (T ′,⇒) be the transfer system generated by⋃
i∈I Orb(Vi). We have to show that T = T ′.

We first show that T ′ ⊆ T . Let (K ≤ G) ∈ Orb(Vi) for some i ∈ I (in particular

K ⇒ G). Then by definition there is a G-equivariant embedding G/K ↪−→ Vi ↪−→ U ,
and thus, by Theorem 3.6, the relation K ≤ G is admissible for D(U), i.e. K → G.

Since relations of this form were generators for T ′, this proves the first part.

Conversely, let us show that T ⊆ T ′. For this, assume K → G. By Theorem

3.6, there exists a G-equivariant embedding φ : G/K ↪−→ U . Since G is finite, this

factors through Vi1 ⊕ · · · ⊕ Vin for some {i1, . . . , in} ⊆ I. Let (x1, . . . , xn) := φ(eK).
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Then the stabilizer K = StabG
x1,...,xn

can be rewritten as
⋂

j≤n Stab
G
xj
. Since by

the orbit-stabilizer theorem, G/StabG
xj

embeds G-equivariantly into Vij , we have

StabG
xj
⇒ G for all j ≤ n by construction. Thus, using several times the axioms

of closure under restriction and transitivity in the definition of a transfer system,

we get K =
⋂

j≤n Stab
G
xj
⇒ G. It remains to show that K → H implies K ⇒ H

when H ̸= G. It suffices to show the cosaturation property (Remark 3.5), i.e. that

relations K → G with target G generate C(D(U)) =: T . For this, let T ′′ be the

transfer system generated by such relations. Assume K → H is admissible in T .
By Theorem 3.6, there exists an H-equivariant embedding φ : H/K ↪−→ ResGH(U).
Let x := φ(eK). Then K = StabH

x = StabG
x ∩ H. By the orbit-stabilizer theorem,

there is a G-equivariant embedding G/StabG
x ↪−→ U , so StabG

x → G by Theorem 3.6.

By construction, this relation is also admissible for T ′′, and thus, by restriction, the

relation StabH
x = StabG

x ∩H ≤ H is also admissible for T ′′, as needed.

Proof of Theorem 3.4.

Step 1: preliminaries from representation theory. Representation theory tells us

that an irreducible component of a G-universe can be of two possible kinds. Firstly,

it can be one dimensional, in which case each element of G acts as an element of

O(1) ≃ {±1} ≃ C2. Then, the representation can be written as a map G→ C2 → R.
Secondly, it can be two-dimensional, in which case each element of G acts as an

element of SO(2), i.e. a rotation. Since G is finite, the representation factors as a

map G → C|G| → R2 where C|G| is viewed as the subgroup of rotations by multiples

of 2π/|G|. Now, if V ≤ U is any irreducible component, with action φ : G → V , a

simple computation shows that Orb(V ) = {ker(φ) ≤ G}. As we just saw, G/ ker(φ)

embeds into C2 or C|G|, so this quotient is cyclic.

Step 2: “only if” direction. Assume T = C(D(U)) for some G-universe U . Then,
by Proposition 3.7, T is generated by all relations of the form ker(φ) ≤ G with

φ : G→ V an irreducible subrepresentation of U . We just saw that in this situation,

G/ ker(φ) was cyclic. This proves the first direction of the theorem.

Step 3: “if” direction. Assume that (T ,→) is a transfer system generated by

relations Hi → G for i = 1, . . . , n with G/Hi cyclic. Thus we may view G/Hi as

the cyclic subgroup of O(2) consisting in rotations of angle a multiple of 2π/|G/Hi|.
Consider the representation φi : G → G/Hi → O(2) → R2 =: Vi. We then have

Orb(φi) = {Hi ≤ G} for all i ≤ n. Therefore, if U :=
⊕

n∈N(Rtriv⊕V1⊕ · · · ⊕Vn), by

Proposition 3.7 we have C(D(U)) = (T ,→), as desired.

3.2. Linear isometries operads

We now turn to a second family of examples of N∞-operads.
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Definition 3.8. Let U be a G-universe. The linear isometries operad L(U) asso-

ciated with U is the topological operad with L(U)(n) the space of (non necessarily

G-equivariant) isometries U⊕n → U , for all n ∈ N. The action of Sn and the compo-

sitions are defined similarly as for the endomorphism operad (Example 1.2).

Lemma 3.9. Let U be a G-universe. The action of G by conjugation as in Definition

3.2 makes L(U) into an N∞-operad. In particular, a G-fixed point in L(U)(n) is a

G-equivariant linear isometry U⊕n → U .

Remark 3.10. Given U a G-universe, the linear isometries operad L(U) and little

disks operad D(U) are in general not equivalent. However, an admissible set for L(U)
is always admissible for D(U) (this follows from Theorems 3.6 and 3.15).

The question is now to determine which transfer systems correspond to linear

isometries operads under the equivalence of Theorem 2.3. Blumberg and Hill found

a simple necessary condition called saturation.

Definition 3.11. A transfer system (T ,→) on G is called saturated if for all sub-

groups K ≤ H ≤ G, if K → H and K ≤M ≤ H then K →M and M → H.

However, this condition does not suffice in general (Remark 3.18). Rubin conjec-

tured in [Rub21b] that it becomes sufficient for cyclic groups of suitable order:

Conjecture 3.12 (Rubin’s saturation conjecture). Let k ∈ N+ and e1, . . . , ek ∈ N.
There exist integers s1, . . . , sk depending on this choice, such that for all k-uples of

distinct primes p1, . . . , pk with pi ≥ si for all i ≤ k, and G := Cp
e1
1 ···pekk

, any saturated

transfer system on G is realized by some linear isometries operad.

Several particular cases were first proven: that of cyclic groups of orders pn and

pq ([Rub21b]), pnq ([HMOO22]) and pnqm ([Ban23]), for p, q ≥ 5 distinct primes and

n,m ∈ N. Finally, MacBrough solved the conjecture, and proved even more:

Theorem 3.13 ([Mac23, Thm 3.5]). Let G be a finite cyclic group of order coprime

to 6. Then G satisfies the saturation conjecture, i.e. every saturated transfer system

on G can be realized by a linear isometries operad.

Theorem 3.14 ([Mac23, Thm 3.14]). There exists some function f : N→ N with the

following property: for any (finite) abelian group G admitting a presentation with at

most two generators, if for all primes p dividing |G|, we have p ≥ f(logp(|P |)), where
P is the Sylow p-subgroup (i.e. a maximal subgroup of order a power of p), then G

satisfies the saturation conjecture.
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In the case of a cyclic group Cn, Rubin reduced the problem to a “pleasant puzzle

in modular arithmetic” ([Rub21b, p310]). More precisely, admissible relations for

L(U) can be described in terms of the translation-invariance properties of a certain

subset of Cn characterizing the universe U , called indexing set. To prove this, we first

need an analog of Theorem 3.6 for linear isometries operads.

Theorem 3.15 ([BH15, Thm 4.19]). Let U be a G-universe, and let K ≤ H ≤ G.

Then, K ≤ H is admissible in C(L(U)) if and only if there exists an H-equivariant

embedding Z [H/K]⊗ U → U .

Remark 3.16. To define the action of H on Z [H/K] ⊗ U , choose an enumeration

H/K = {h1K, . . . , hkK}. For all h ∈ H and i ≤ k, write hhi = hσh(i)ki(h) with

ki(h) ∈ K. Then, for all u ∈ U , let h · (hiK) ⊗ u = hσh(i)K ⊗ ki(h)u. In particular,

Z [H/K]⊗ U is then isomorphic as an H-representation to Z[H]⊗Z[K] U .

Proof. A fixed point F ∈ L(U)(n)ΓH,K is a ΓH,K-equivariant map F : U⊕n → U . By

definition ΓH,K = {(h, σh) | h ∈ H} where σh describes the permutation induced on

H/K by h. Then, under the identification Z [H/K]⊗U ∼= U⊕n sending hiK⊗u to hiu

on the i-th summand, F becomes an H-equivariant embedding f : Z [H/K]⊗U → U .
Indeed, for all h ∈ H, i ≤ n and u ∈ U , we have:

h · f(hiK ⊗ u) = h · F (0, . . . , hiu, . . . , 0) (hiu in the i-th summand)

= h · ((h−1, σ−1
h ) · F )(0, . . . , hiu, . . . , 0)

= hh−1F (0, . . . , hhiu, . . . , 0) (hhiu in the σh(i)-th summand)

= f(hσh(i)K ⊗ ki(h)u) = f(h · (hiK ⊗ u)).

The proof of the other implication is similar.

Proposition 3.17 ([Rub19b, Prop. 5.13 and 5.14]). Let G = Cn for n ∈ N+ be the

finite cyclic group of order n. Then:

1. Any G-universe is of the form UI :=
⊕

n∈N
⊕

j∈I λn(j) with 0 ∈ I ⊆ Cn and

−I ⊆ I, where λn(j) is the representation of G where [1] ∈ G acts by rotation by

2πj/n in R2. We call such a set I an indexing set, and say that it realizes the

associated transfer system C(L(UI)).
2. The relation Cd

∼= (n/d)Z/nZ ≤ (n/e)Z/nZ ∼= Ce for d | e | n is admissible in

C(L(UI)) if and only if (I + d) (mod e) = I (mod e).

Proof. Part 1 follows from Definition 3.1 using the facts that λn(0) ∼= Rtriv⊕Rtriv; that

λn(i) ∼= λn(n − i) for all 0 < i < n; and that the isomorphism classes of irreducible

finite-dimensional representations of G are {Rtriv, λn(1), . . . , λn((n−1)/2} if n is odd,

and if n is even, one has to add the sign representation to the list.

20



WHEN EQUIVARIANT HOMOTOPY THEORY MEETS COMBINATORICS

For part 2, let I be an indexing set and UI be the associated G-universe. In virtue

of Theorem 3.15, the relation (n/d)Z/nZ ≤ (n/e)Z/nZ is admissible in C(L(UI)) if
and only if there is exists a Ce

∼= (n/e)Z/nZ equivariant embedding

Z
[
((n/e)Z/nZ)

/
((n/d)Z/nZ)

]
∼= Z [dZ/eZ]⊗ UI −→ UI .

An explicit computation ([Rub19b, Lemma 5.12]) shows that the left-hand side is

isomorphic to
⊕

n∈N
⊕

i∈I
⊕e/d−1

a=0 λe(i+da) and the right-hand side to
⊕

n∈N
⊕

i∈I λe(i).

If such an embedding exists, then each λe(i + da) embeds in
⊕

n∈N
⊕

i∈I λe(i). By

irreducibility, this can happen only if i + da or −(i + da) (mod e) appears as an

index on the right-hand side. Since I = −I we obtain i + da ∈ I for all i ∈ I

and 0 ≤ a ≤ e/d − 1. If e ̸= d then d | e implies e/d − 1 ≥ 1. Choosing a = 1,

we thus obtain (I + d) (mod e) ⊆ I (mod e), and choosing a = e/d − 1, we get

(I+(e/d−1)d) (mod e) = (I−d) (mod e) ⊆ I (mod e), so (I+d) (mod e) = I (mod e).

Conversely, if the latter holds, then for all i+ da, i ∈ I and 0 ≤ a ≤ e/d− 1, we can

embed all λe(i+ da) into the direct sum on the right-hand side since i+ da ∈ I and

our sums are both countably infinite.

Remark 3.18. Here is a counterexample to Theorem 3.13 if 2 or 3 divides |G|.
We claim that if p ≤ 3 and G := Cpnqm for some n,m ∈ N+, then the saturated

transfer system (T ,→) on G with only non-trivial relation {0} → Cq is not realized

by any linear isometries operad. Indeed, if I ⊆ Cpnqm was an indexing set realizing

it, then by Proposition 3.17(2), J := I (mod pq) realizes the restriction of T to

Cpq. This is impossible, as proven in [Rub21b, Lemma 5.22]. By contradiction, we

would have J ⊆ pCpq, because otherwise J (mod p) ̸= {0}, but then p ≤ 3 implies

that the indexing set J (mod p) is equal to Cp. This is 1-translation-invariant, so

{0} → Cp, which is false. Now, since {0} → Cq, J (mod q) is 1-translation-invariant,

so J (mod q) = Cq. Thus J = pCpq (if |J | < q then also |J (mod q)| < q). But then

J is p-translation-invariant, so Cp → Cpq, which is a contradiction.

Using Proposition 3.17, one can construct by hand an indexing set realizing a

given saturated transfer system in easy cases (this is how the proofs of the afore-

mentioned particular cases of Conjecture 3.12 proceed). The combinatorics quickly

become pretty involved, and generalizing this approach seems impossible in practice.

The main problem is that (saturated) transfer systems on a product of groups (or

posets) are not described by (saturated) transfer systems on the individual factors.

Thus, the difficulty increases with the number of prime divisors of the order of G.

MacBrough’s approach beautifully circumvents the problem by defining the notion

of tight pairs, which are abstract devices associated with the group itself, and whose

existence witnesses that G satisfies the saturation conjecture. In particular, there is

21



JULIE BANNWART

an algorithm that, given a tight pair and a saturated transfer system, produces a

linear isometries operad realizing the transfer system. The process does not depend

on any explicit feature of the specific group or saturated transfer system considered,

contrarily to the explicit approaches to Conjecture 3.12 mentioned previously. The

most significant advantage of tight pairs is that they behave well with respect to

products of groups (Proposition 3.25). Any cyclic group being a product of groups

of the form Cpn with p prime and n ∈ N, it then suffices to prove the saturation

conjecture for these simpler groups. We now delve into some details of this approach.

For a finite group H, let Ĥ be the set of isomorphism classes of finite-dimensional

irreducible complex representations of H.

Definition 3.19 ([Mac23, Def. 2.2]). A sub-inductor for G a finite abelian group is

a collection J of maps JH
K : P(K̂) → P(Ĥ) from the subsets of K̂ to those of Ĥ,

indexed by intervals K ≤ H in Sub(G), such that for all K ≤ H ≤M ≤ G:

1. The map JH
K commutes with unions, inclusions, and complex conjugation.

2. We have JM
K = JM

H ◦ JH
K .

3. We have ResHK ◦ JH
K = id, where ResHK(E) = {W ∈ K̂ | ∃V ∈ E,W ≤ ResHK(V )}

for all E ⊆ Ĥ, and the second ResHK denotes the usual restriction.

4. For any K ′ ≤ H and E ⊆ K̂ ′, we have ResHKJ
H
K′(E) ⊆ JK

K∩K′ResK
′

K∩K′(E).

5. We have Ctriv ∈ JH
K (Ctriv).

Definition 3.20 ([Mac23, Def. 3.1]). A tight pair for G a finite abelian group is a pair

(D,J) where J = (JH
K )K≤H≤G is a sub-inductor; and D = (D(H))H≤G is a diagram,

i.e. a collection of subsets D(H) ⊆ Ĥ indexed by subgroups of G. We require the

following axioms, for all K ⪇ H ≤ G:

1. The diagram D is stable under complex conjugation (i.e. D(H) = D(H)) and

restriction (i.e. ResHK(D(H)) ⊆ D(K)).

2. We have IndH
K(D(K)) ̸⊆ D(H)∪

⋃
H′⪇H JH

H′(D(H ′)), where IndH
K is extended from

the usual induction of representations in the same way we extended ResHK .

3. We have D(H) ̸⊆
⋃

H′⪇H JH
H′(D(H ′)).

Remark 3.21. Stability under conjugation of D(H) corresponds to the requirement

I ⊆ −I in the definition of an indexing set. If we further require Ctriv ∈ D(H) for

H ≤ G, then each D(H) corresponds to a G-universe (Proposition 3.17(1)).

Theorem 3.22 ([Mac23, Cor. 3.2]). Let G be a finite abelian group. If G admits a

tight pair, then it satisfies the saturation conjecture; that is, every saturated transfer

system on G can be realized by a linear isometries operad.
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Remark 3.23. Condition 3 in Definition 3.20 is not needed to prove Theorem 3.22,

but ensures well-behavedness of tight pairs under products (Proposition 3.25).

Sketch of proof. Given a tight pair (D, J) for G, we may assume Ctriv ∈ D(H) for

all H ≤ G (otherwise, add it to the diagram, the result remains a tight pair). Then,

every D(H) is stable under conjugation and contains the trivial representation by

hypothesis, so it corresponds to a G-universe by Remark 3.21.

Given a saturated transfer system (T ,→) on G, we will extend D into an (T , Ind)-
stable and (≤, J)-stable diagram D̃. Here, for a transfer system T ′ and a sub-inductor

J ′, a diagram D′ is called (T ′, J ′)-stable if (J ′)HK(D
′(K)) ⊆ D′(H) for all relations

K ≤ H admissible for T ′. Mac Brough proves that such stability properties and the

axioms in the definition of a tight pair ensure that the G-universe corresponding to

D̃(G) realizes T . The (T , Ind)-stability of the diagram will ensure T ⊆ C(D̃(G)),

while the other assumptions imply the converse.

To find such a diagram D̃, one repeats the process of alternatively taking the

minimal (T , Ind)-stable diagram, respectively (≤, J)-stable diagram containing the

diagram from the previous step, starting with D. By finiteness of the objects consid-

ered, this process stabilizes after a finite number of steps. In formulas, one computes

the sequence D =: D0 ⊆ D1 ⊆ . . . where, if i ≥ 1 is odd, we have

∀H ≤ G, Di(H) =
⋃

K→H

IndH
K(Di−1(K))

(minimal (T , Ind)-stable extension of Di−1) and if i ≥ 2 is even, we have

∀H ≤ G, Di(H) =
⋃

K≤H

JH
K (Di−1(K))

(minimal (≤, J)-stable extension of Di−1).

Proposition 3.24 ([Mac23, Lemma 3.4]). Let p ≥ 5 be a prime and n ∈ N. Then,

the group G = Cpn admits a tight pair.

Sketch of proof. Subgroups in G form a chain H0 ⊆ H1 ⊆ · · · ⊆ Hn = G with

Hi
∼= Cpi for all 0 ≤ i ≤ n. Define a sub-inductor J for G as follows: for all i ≤ n, let

JHi
Hi

be the identity, JHi
Hi−1

be the union-preserving extension of

JHi
Hi−1

({λpi−1(j)}) := {λpi(j), λpi(p
i − (pi−1 − j))},

and J
Hi+k

Hi
= J

Hi+k

Hi+k−1
◦ · · · ◦ JHi+1

Hi
for any 1 ≤ k ≤ n − i. One has to check that this

indeed defines a sub-inductor. Also let D(Hi) = {Ctriv, τi, τi} for all i ≤ n, where we

choose τi := λpi(2p
i−1). MacBrough’s proof requires τi ∈ IndHi

Hi−1
(Ctriv)\

⋃
j<i J

Hi
Hj
(Ĥj).
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The latter equals

{λpi(αp
i−1) | 0 ≤ α < p} \ {λpi(j), λpi(p

i − (pi−1 − j)) | 0 ≤ j < pi−1},

and p > 3 implies pi−1 < 2pi−1 < pi − pi−1, so τi = λpi(2p
i−1) is a valid choice. Using

Frobenius reciprocity and cardinality arguments (where the fact that p > 3 comes

again in handy), MacBrough shows that (D, J) is a tight pair for G.

Proposition 3.25 ([Mac23, Lemma 3.3]). Let (D, J) and (D′, J ′) be tight pairs for

finite abelian groups G, respectively G′, with coprime orders. Then G × G′ admits a

tight pair (D ⊗D′, J ⊗ J ′), with, for all K ≤ H ≤ G and K ′ ≤ H ′ ≤ G′,

(D ⊗D′)(H ×H ′) = D(H)⊗D′(H ′)

= {Z ∈ Ĥ×H ′ | ∃V ∈ D(H),∃W ∈ D(H ′), Z ≤ V ⊗W}

and (J ⊗ J ′)H×H′

K×K′ is the union-preserving extension of the assignment

∀τ ∈ K̂,∀τ ′ ∈ K̂ ′, (J ⊗ J ′)H×H′

K×K′(τ ⊗ τ ′) = JH
K (τ)⊗ JH

K (τ).

The statement is not too difficult to prove by checking the axioms directly. The

core of Theorem 3.13 is rather to define tight pairs, in a way that they witness

satisfaction of the saturation conjecture while being compatible with products.

Proof of Theorem 3.13. Let G be a cyclic group of order n coprime to 6. Write

the prime decomposition of n as pe11 · · · perr . By assumption, we have pi ≥ 5 for all

i ≤ r. Then, by Proposition 3.24, for all i ≤ r, the group Cp
ei
i

admits a tight pair.

Using Proposition 3.25 (n − 1) times, the group
∏

i≤r Cp
ei
i

∼= G admits a tight pair.

Therefore, by Theorem 3.22, G satisfies the saturation conjecture.

4. Open problems and further directions

This section aims to give a starting point to the interested reader wishing to

continue the adventure; it contains references, some information about recent devel-

opments in the field, and several suggestions of open questions to consider.

First of all, for readers wishing to learn more, [BH15] constitutes a good introduc-

tion to N∞-operads, and [LV12] and [MSS02] are good references for studying operads

in general. About Steiner (or little disks) and linear isometries operads, Rubin’s and

MacBrough’s articles [Rub21b] and [Mac23] are pretty accessible.
As for further developments, the authors of [CGM24] study different variants

of the problem of Section 3, namely that of realizing N∞-operads by Steiner (or
little disks) and linear isometries operads. More precisely, working over complex G-
universes instead of real ones, they study which pairs of transfer systems correspond
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to pairs consisting of a little disks operad and a linear isometries operad over the
same G-universe. They also study the saturation conjecture for cyclic groups with
order not coprime to 6. The situation is not entirely settled, and the authors make a
conjecture, which they partly prove ([CGM24, Conjectures 5.1 and 5.2]).

In [Mac23, Questions 1.4 and 1.5], MacBrough suggests two open problems. Firstly,
he proposes studying the saturation conjecture for non-abelian groups (for example,
determine all integers n such that the dihedral group Dn satisfies the saturation
conjecture). In the non-abelian world, interesting progress is made in the article
[BMO23]. The main point is that when G is not abelian, transfer systems in Sub(G)
are no longer purely combinatorial objects because one has to take into account the
non-trivial conjugation action of G. The axiom of stability under conjugation in
the definition of a transfer system could give a hint in the direction of studying the
poset of conjugacy classes of subgroups in G instead; however, this fails to describe
the homotopy theory of the associated N∞-operads in general. The authors provide
a criterion on G for this simplification to be legitimate. Secondly, in MacBrough’s
result for non-cyclic abelian groups (Theorem 3.14 above), an implicit function f
appears. One could try to improve the upper bound on f proven in [Mac23], find a
lower bound, or discuss the properties of f in general.

Various counting problems have also been addressed. For instance, the authors
of [BMO25] provide a formula for the number of homotopy classes of N∞-operads
on dihedral groups Dpn for p an odd prime and cyclic groups Cqpn , for p, q distinct
primes. The authors also provide a “general recursive method for constructing trans-
fer systems on finite lattices”, as they write. The authors of [HMOO22] found a closed
formula for the number of saturated transfer systems on the group Cpnqm (and thus,
by Theorem 3.13, for the number of homotopy classes of linear isometries operads if
p, q ≥ 5), and for their generating function. Moreover, the authors of [BBR21] study
the relation between transfer systems on the group Cpn (and thus, homotopy classes
of N∞-operads) and various other combinatorial objects such as binary trees, Catalan
numbers, and associahedra. Using this, they provide a lower bound on the cardinality
of Ho(N∞-Op) for a given cyclic group.

Transfer systems are also very interesting objects on their own. They are closely
related to model structures on (the category associated with) a poset ([FOO+22]), and
help in classifying the latter ([BOOR23]). The equivalence between indexing sets and
transfer systems has analogs over orbital ∞-categories ([NS22, Ste25]). Moreover,
transfer systems are also strongly related to the notion of bi-incomplete Tambara
functors ([BH22] and [Cha24]) with their norms and transfer maps.
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