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Abstract

This paper presents a formal verification of the Euler Sieve algorithm — a linear
variant of the classical Sieve of Eratosthenes — using the Lean proof assistant. We
begin by discussing the traditional Sieve of Eratosthenes and its inherent redundancy
when crossing out composite numbers. We then introduce the Euler Sieve, which
overcomes this drawback by ensuring that each composite number is “marked” only
once, achieving linear time complexity. Finally, we present a Lean formalization that
rigorously verifies the correctness of the Euler Sieve, including definitions, lemmas, and
the overall rigorous recursive structure. To the best of our knowledge, this work is the
first formal proof of the Euler Sieve by an interactive proof assistant.
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Introduction

A natural number greater than 1 is composite if it can be factored as the product
of two numbers greater than 1. Otherwise, a number is prime if it cannot be so
factored. The identification and enumeration of prime numbers constitute a founda-
tional problem in number theory, carrying substantial implications for mathematics
and computer science. A common method for identifying prime numbers is known as
a steve, an algorithm that begins with the list of numbers from 2 to n and systemati-
cally crosses out all composite numbers, leaving only the primes. Among these prime
sieves, the Sieve of Eratosthenes, dating back to ancient Greece, is particularly no-
table for its conceptual simplicity and historical significance. However, this classical
algorithm suffers from inherent redundancy, resulting in non-linear time complexity.

In the 20th century, as computers emerged, there was a surge of interest in prime
sieving methods. Many scientists tried to address the inefficiency in the Sieve of
Eratosthenes, which led to the creation of numerous prime sieves with linear time
complexity. However, in 1978, Gries and Misra rediscovered and observed a linear
prime sieve which had already been devised in the 18th century — namely, the Euler
Sieve. Remarkably, Leonhard Euler formulated this algorithm long before computers
existed, and it is widely recognized as the very first linear sieve for generating prime
numbers.

In this paper, we present a rigorous formal verification of the Euler Sieve algo-
rithm using the Lean interactive proof assistant. Formal proofs involve encoding
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mathematical statements and their proofs in a formal language that a computer sys-
tem can rigorously check for logical correctness. Lean is a modern, interactive theorem
prover that allows mathematicians and computer scientists to build reliable, formally
verified proofs with absolutely no errors. Formal verification is particularly signifi-
cant in algorithmic number theory, as it guarantees the correctness of computational
methods.

Our formalization explicitly verifies the correctness of the Euler Sieve by establish-
ing that its output — a complete list of primes and an associated function identifying
the smallest prime factor of each integer — is accurate.

1. Background on the Sieve of Eratosthenes

The idea of systematically “sieving” out composite numbers from a list of natural
numbers can be traced back to ancient Greece. The Sieve of Eratosthenes, attributed
to the Greek mathematician Eratosthenes of Cyrene (circa 276-194 BC), is one of
the oldest known algorithms for finding all prime numbers up to a given limit n. In
his work, Eratosthenes proposed listing all integers from 2 to n and then sequentially
crossing out the multiples of each prime, beginning with 2.

1.1. The naive version

To find all prime numbers not exceeding a positive integer n, we begin with the
list
S={2,3,4,...,n}.

The method proceeds as follows:

1. For each number p in S, starting from 2, if p has not been crossed out from the
set, then p is declared prime.

2. Once p is identified as prime, every multiple of p that lies in S (that is, 2p, 3p. . .)
is eliminated from S because they must be composite.

3. This procedure is repeated for the next number in the list that has not yet been
crossed out.

After all numbers in S have been processed in this manner, the remaining ele-
ments of S are exactly the prime numbers up to n.

A very primitive version of the sieve can be described by the following pseudocode:
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function NaiveSieve(n):
A[2..n] = true
for i from 2 to n:
if A[i] is true:
for j from 2*i to n with step i:
A[j] := false
return all i such that A[i] is true

1.2. The optimized version

An important observation is that if n is composite, then it must have a factor less
than or equal to y/n. Therefore, it suffices to perform the sieving process only for i
up to [/n], where [\/n] is the floor of \/n — the greatest integer less than or equal
to n.

A further optimization is possible by noting that for a prime 4, any multiple & x ¢
with & < i would have been crossed out already when processing the prime factor of
k. Hence, we can safely begin the inner loop at 2.

This gives the final optimized pseudocode:

function EratosthenesSieve(n):
A[2..n] = true
for i from 2 to floor(sqrt(n)):
if A[i] is true:
for j from i*i to n with step i:
A[j] := false
return all i such that A[i] is true

But still, it maintains the problem of crossing out a composite number several
times. This is crucial and causes the non-linear running time of the algorithm.

1.3. Complexity analysis

Before we delve into the technical details, we briefly explain what we mean by
complexity analysis. In computer science, time complexity analysis measures the
efficiency of an algorithm in terms of the number of operations it performs with
respect to the input size n. For the purpose of this paper, we use the following
definition and notations:

e We say that a sieve algorithm has run time O(f(n)) if there exist constants
C > 0 and ng € N such that, for all n > ng, the numbers between 2 and n are
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crossed out at most C' f(n) times. Hence, O(f(n)) gives an asymptotic upper
bound on the running time.

e We say that a sieve algorithm has run time Q(f(n)) if there exist constants
C > 0 and ng € N such that, for all n > ng, the numbers between 2 and n
are crossed out at least C' f(n) times. Thus, Q(f(n)) gives an asymptotic lower
bound on the running time.

e If asieve algorithm has both an asymptotic upper bound O( f(n)) and an asymp-
totic lower bound Q(f(n)), we say that it has run time O(f(n)).

Specifically, if an algorithm crosses out each number once, its running time is

O(n).
Theorem. The Optimized Sieve of Eratosthenes has run time ©(nloglogn).

Proof. For each prime p with p < y/n, the inner loop (which crosses out multiples
of p between p? and n) executes exactly

L(p) = V;pQJ +1

iterations. Hence, we obtain the following bounds for the number of crossing-out

operations for a fixed prime p:

n n
E—pEL(p)_——p—i-l.

i~

Summing over all primes p satisfying p < +/n, the total number of crossing-out
operations T'(n) satisfies

n n
> (——p) <T(n)< ) (——p+1>.
p<v/n p p<V/n p
We can rewrite the main term as
n 1
LSS
p p
p<yv/n p<v/n

A classical result in analytic number theory, known as Mertens’ second theorem,

states that 1
JL%(ZZ; — 10g10gx> =M,

p<w

or equivalently,

1
Z— = loglogz + M + O(1),

p<z
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where M denotes the Meissel-Mertens constant (approximately 0.261497).
Setting © = /n, we obtain

1
> = =loglogvn+ M+ O(1) =loglogn —log 2 + M + O(1).
p<v/n
Therefore, the upper bound for T'(n) becomes
T(n) < n(loglogn —log2+ M + O(l)) — Z (p—1).
p<yvn
Thus,
T(n) = O(nloglogn).
Similarly, the lower bound for 7'(n) is
T(n) > n(loglogn —log2+ M + O(l)) - Z P.
p<y/n
For the sum Zpg /n bs observe that

Zpg%igﬁ(\/ﬁﬂ)_nh/ﬁ

p<v/n =1 2 2

which does not alter the overall complexity. Thus,
T(n) = Q(nloglogn).
Therefore, we deduce that
T(n) = O(nloglogn). O

This theorem implies that even an optimized version of the sieve algorithm is
asymptotically larger than a linear algorithm (an algorithm with run time O(n)).

2. Improvement in the Euler Sieve

In later developments, efforts were made to address the redundancy inherent in
the Sieve of Eratosthenes. In the 18th century, Leonhard Euler introduced a new
prime sieve designed to avoid repeatedly crossing out the same composite numbers,
achieving a linear time complexity.

The key idea is to ensure that each composite number is “marked” exactly once,
using only its smallest prime factor. This refined method is now commonly known as
the Euler Sieve. Moreover, the Euler Sieve produces not only a prime list, but also
a least factor function. It is particularly useful because the least factor function can
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accelerate rapid factorization.
In the classical Sieve of Eratosthenes, one begins with the list

S=1{2,3.4,....n},

and proceeds by crossing out every composite number as a multiple of some prime.
In contrast, the Euler Sieve avoids the simple crossing out of numbers. Instead, it
marks each number with its least factor(equivalent to its least prime factor, which is
greater than 1) using the function f. Consequently, a number i for which f(i) # i is
a composite number.

The Euler Sieve starts with a function f which for all x,

f(z) =0,
and an empty prime list
ps= 1.
The method proceeds as follows:
1. For each number ¢ in the domain {2,...,n}, if f(i) is not yet assigned (i.e.,

f(i) = 0), then 7 is recognized as prime, and we set f(i) := ¢. Then, we add i
to the end of the prime list.

2. For each i and for each prime p from the prime list so far, if p < f(i) and
(i x p) < n, the number i x p is marked by setting f(i X p) = p. This ensures
that ¢ x p is assigned its least factor.

3. This procedure is repeated by increasing ¢ by 1 till it reaches n.

The pseudocode for the FEuler Sieve is presented below:

function EulerSieve(n):
f[2..n] =0
ps = [I
for i from 2 to n: // outer loop
if £[i] == 0:
flil =1
append 1 to ps
for each prime p in primes: // inner loop
if p > f[i] or i * p > n:
break
fli *pl =p
return (primes, f)
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We observe that the assignment £f[i * p] = p uses a prime p which by construc-
tion satisfies p < f[i] (the least factor of 7). So it is indeed the smallest prime factor of
1 X p. This guarantees that each composite is marked exactly once, just as intended,
and yields an overall linear time complexity. All we need to ensure is that each state
in the looping process gives a correct prime list and a correct least factor function.

More details will be shown in section §4. Formalization of the Euler Sieve. Note,
however, that in our formalization, we only verified the algorithm’s correctness, not
its linear running time. We will describe current progress made on extending this
formalization in section §5. Discussion and Future Work.

3. The Lean prover

In recent years, the pursuit of rigorous, error-free mathematics has led to the
development of formal verification tools known as proof assistants. These systems
enable mathematicians and computer scientists to construct and verify proofs with
machine-checked precision, ensuring that every logical inference adheres strictly to
foundational rules. Among these tools, Lean has emerged as a prominent platform,
blending expressive mathematical language with robust verification capabilities.

3.1. Overview of Lean

Lean is an interactive theorem prover and functional programming language de-
veloped to support formal reasoning in mathematics and computer science. It is based
on dependent type theory, a framework that unifies programming and logic, allowing
for the expression of complex mathematical concepts and the construction of proofs
within the same language.

Lean’s design emphasizes both automation and user interaction. It offers powerful
tools for automated reasoning, such as tactics that can simplify proof construction,
while also allowing users to guide the proof process interactively. This balance makes
Lean suitable for a wide range of formalization tasks, from verifying simple algorithms
to formalizing advanced mathematical theories.

3.2. The Mathlib library

A cornerstone of Lean’s ecosystem is mathlib, an extensive library of formalized
mathematics developed collaboratively by the Lean community. Mathlib encompasses
a broad spectrum of mathematical domains, including algebra, analysis, topology,
and number theory. Its comprehensive collection of definitions, theorems, and proofs
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serves as a valuable resource for users aiming to build upon existing formalizations
or contribute new ones.

The collaborative nature of mathlib fosters a dynamic environment where con-
tributors can share their work, receive feedback, and collectively advance the formal-
ization of mathematics. This communal effort not only accelerates the development
of the library but also promotes best practices in formal proof construction.

3.3. Applications and impact

Lean has been employed in various significant formalization projects, demonstrat-
ing its versatility and robustness. Notably, it has been used to formalize complex
mathematical results, such as the proof of the Liquid Tensor Experiment led by Peter
Scholze and the formalization of the Polynomial Freiman—Ruzsa (PFR) conjecture by
Terence Tao and collaborators. These endeavors highlight Lean’s capacity to handle
intricate mathematical arguments and its growing role in contemporary mathematical
research.

Beyond pure mathematics, Lean’s formal verification capabilities have applica-
tions in computer science, particularly in verifying the correctness of software and
algorithms.

3.4. Getting started with Lean4 for beginners

For readers new to formal verification and theorem proving, learning Lean4 might
seem daunting initially. Here we list a recommended sequence of resources:

e The Natural Number Game!': This interactive web-based tutorial intro-
duces the basics of formal proofs in Lean through a gamified approach. Users
solve progressively challenging puzzles involving natural numbers, arithmetic,
and logic.

e Mathematics in Lean?: This free online textbook provides a comprehensive
introduction to using Lean for formal mathematics. It covers foundational con-
cepts, essential techniques, and practical examples in different mathematical
branches.

e Theorem Proving in Lean 43: This is also a free online textbook. It is an
authoritative resource that serves as both a reference manual and a textbook,

https://adam.math.hhu.de/#/g/leanprover-community/nng4
Zhttps://leanprover-community.github.io/mathematics_in_lean/
3https://leanprover.github.io/theorem_proving_in_leand/
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describing Lean’s core features, advanced concepts, and programming strategies
in detail.

e Lean 4 Web*: This online platform enables immediate experimentation with
Lean4 and Mathlib without any installation. Beginners can quickly test exam-
ples and familiarize themselves with Lean’s syntax and proof style interactively.

In the subsequent sections, we will delve into the formalization of the Euler Sieve
algorithm within Lean, illustrating how the prover’s features facilitate the rigorous
verification of algorithmic correctness.

4. Formalization of the Euler Sieve

In this section, we present our Lean formalization of the Euler Sieve(the Linear
Sieve). Our approach is organized into several layers, each building systematically
upon the previous one to ensure the correctness of the algorithm by construction.
First, we use functions to represent arrays and rewrite the algorithm in a recursive
style. Then, we introduce two final types that explicitly represent the state at each
stage of computation. After establishing several auxiliary lemmas to support the
subsequent correctness proofs, we provide a detailed, step-by-step explanation of the
three complete functions. These functions extend the original recursive definition by
embedding correctness proofs within the recursion itself, explicitly passing verified
states as parameters. Ultimately, this structured approach culminates in a fully
verified construction of the Euler Sieve.

4.1. Simulating the update of functions

In Lean, we simulate an update of a function by returning a new function. To
achieve this, we define the following Lean function:

def updateFunction (f : Nat -+ Nat) (k v : Nat) : Nat -+ Nat :=
fun x => if x = k then v else f x

This updateFunction works as follows: it takes an existing function f, an index
k, and a new value v. It returns a new function which, when applied to an index =z,
checks if x is equal to k. If so, it returns v. Otherwise, it returns the original value
f(z). This provides a purely functional way to simulate the update operation.

‘https://live.lean-lang.org/
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4.2. Rewriting the algorithm recursively

Since Lean is a functional programming language, we want to rewrite the for-loop
version of the Euler Sieve in Section §2 into a recursive version. The outer loop in the
pseudocode over i becomes EulerSieveAux, and the inner loop over the current prime
list becomes processPrimes. This approach preserves the behavior of the original

Euler Sieve while ensuring termination can be verified in Lean.

The inner loop of the Euler Sieve is defined as follows:

def processPrimes (i : Nat) (f : Nat - Nat) (ps
(n : Nat): Nat - Nat :=

match ps with

-— 1f no primes in prime list, return f

| L] => f

-— else, split the prime list ps to an element p and the following
~ sublist ps'(process the next prime after p)

| p :: ps' =>
if p>f iV ix*p>n then £
else
let f' := updateFunction f (i * p) p

processPrimes i f' ps' n
The outer loop of the Euler Sieve is defined as follows:

def EulerSieveAux (n i : Nat) (ps : List Nat) (f
(List Nat x (Nat - Nat)) :=
if i > n then (ps, f)
else
let (ps', f') :=
if £ i = 0 then
-— 7 %8 prime, update f
let fNew := updateFunction f i 1
-— enter inner loop

: List Nat)

: Nat - Nat)

(ps ++ [i], processPrimes i fNew (ps ++ [i]) n)

else
-— enter inner loop
(ps, processPrimes i f ps n)
EulerSieveAux n (i + 1) ps' f'
-- ensures the recursion will terminate
termination_by n + 1 - 1
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Finally, call EulerSieveAux with EulerSieve to pack everything together:

def EulerSieve (n : Nat) : (List Nat x (Nat - Nat)) :=
-- start sieving at 2, set inttial list to empty and fuction to
- zero

EulerSieveAux n 2 [] (fun _ => 0)

4.3. Necessary types

To maintain the correctness invariants throughout the recursion, we define sev-
eral dependent types that bundle both data and their correctness properties. This
approach ensures that once a value of these types is constructed, it automatically
carries all necessary information, so subsequent functions can rely on it without an
additional proof burden. The idea is to use these types within the recursive function,
allowing us to construct an induction proof during recursion.

4.3.1 final_PS

We begin with a predicate to ensure that a list of natural numbers is strictly sorted
in ascending order:

def list_sorted : List Nat - Prop

| L] => True

| [x] => True

| x::y::1 => x <y A list_sorted (y::1)

Next, we package this property together with a bounding condition, creating the
sorted_bounded_list type:

def sorted_bounded_list (i j: Nat) : Type :=
{ ps : List Nat // list_sorted ps A (Vx € ps, j < x Ax < i) }

An object of type sorted_bounded_list ¢ j is thus a sub-type of containing:
1. A list ps of natural numbers.

2. A proposition that ps is sorted in ascending order.

3. A proposition that every element of ps lies between j and 1i.

While sorted_bounded_list ¢ j guarantees sorting and bounding, we still need
a proposition that this list exactly consists of the primes in the specified range. We
capture this condition with correct_PS:
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def correct_PS : sorted_bounded_list i j -+ Prop :=
--split data and proposition from sorted_bounded_list 2 j
fun {(ps, _h) =>
Vx, j<xANx<1i-2 (x € ps ¢ Nat.Prime x)

Thus, correct_PS states that for every x between j and i, membership in ps is
equivalent to x being a prime.
Finally, we combine these notions into final PS:

def final PS (i: Nat) : Type :=
{ ps : sorted_bounded_list i 2 // correct_PS ps }

4.3.2 final FS

Similarly, we need to formalize the least factor function with another final type:

def final FS (i n : Nat) : Type :=
{ f : Nat - Nat //
(Vm, (fm=0)V (fm=Nat.minFac m)) A
Vx, 2<xAx<1in-
= Nat.minFac x A
Vy, (Nat.Prime y A 2 <y Ay < f x) ~
x*y <n-f (x*xy) #0) 7

An element of type final FS i n therefore ensures:

1. For any natural number m, f(m) is either 0 or the least factor of m.

2. For each z in the range [2,i], £(x) has already been correctly set to the least
factor of z.

3. Crucially, whenever x x y < n and y is a prime that less or equal to the
least factor of x, we must not leave f(x x y) at 0 (which should be the least
factor of  x y). This condition enforces that every composite discovered in
processPrimes is indeed marked correctly.

4.4. Lemmas for proofs

Several auxiliary lemmas are used to support the proofs of correctness in our
formalization. We only show one of the key lemmas in this paper.
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Lemma 4.1 (mul_of least). Let p be a prime number and let x > 2 be an integer. If
p is less than or equal to the least factor of x, then the smallest factor of p X x is p.

lemma mul_of_least {p x : Nat} (hp : Nat.Prime p) (hx : 2 < x)
(h : p < Nat.minFac x) : Nat.minFac (p * x) = p := by
have hl: Nat.minFac (p * x) < p := by
apply Nat.minFac_le_of_dvd
apply Nat.Prime.two_le hp
apply Nat.dvd_mul_right

have hg: p < Nat.minFac (p * x) by
let q := Nat.minFac (p * x)
have hq_dvd : q | p * x := by apply Nat.minFac_dvd
have hg_nz : p * x # 1 := by aesop
have hq_prime : Nat.Prime q := Nat.minFac_prime hq_nz
have hq_cases : (9@ | p) V (g | x) := (Nat.Prime.dvd_mul
— hq_prime) .mp hq_dvd
match hq_cases with
| Or.inl hqgp =>
have gq_eq_p : q = p := (Nat.prime_dvd_prime_iff_eq hq_prime
— hp) .mp hqgp
linarith
| Or.inr hgx =>
apply le_trans h (Nat.minFac_le_of_dvd (Nat.Prime.two_le
< hq_prime) hqgx)
linarith

Explanation:

hl : First, it proves that the least factor of p x x is less than or equal to p by using
the property that the least factor must be less than or equal to other factors.

hg : Second, it shows that p is less than or equal to the least factor of p x x by letting
q be the least factor of p x x and using the fact that ¢ divides p x x. Because ¢
is also a prime, we can analyze the two possible cases — either ¢ divides p or ¢
divides x — and apply the given hypothesis that p is less than or equal to the
least factor of x.

Then, we combine them together to get p is equal to the least factor of p x x.
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4.5. Complete functions

The final piece of our formalization consists of three complete functions that in-
tegrate all previous components to yield a fully verified Euler Sieve. It expands the
previous recursive functions and passes the correct propositions as parameters with
proofs. Thus, the code is organized in such a way that it automatically includes the
required proofs during recursion. In this approach, the induction proof step is directly
embedded within the recursive construction, streamlining the verification process.

4.5.1 processPrimes_complete

This function is the expanded version of processPrimes. It integrates all the
necessary proof obligations with the algorithmic update of the least prime func-
tion f. In every recursive call, the function carries along five key propositions
(named hf1 through hf5) that ensure the correctness of the sieve. In the end,
processPrimes _complete returns a type final FS (i+1) n with its range upper
bound.

Here is the simplified code fragment:

def processPrimes_complete (n i j : Nat) (hi : 2 < i)
(ps : sorted_bounded_list (i+1) (j+1)) (hps : correct_PS ps)
(f : Nat - Nat)
(hfl1 : Vm, (fm=0)V (f m = Nat.minFac m))
(hf2 : Vx, 2 <xAx<1in-=
f x = Nat.minFac x A
Vy, (Nat.Prime y A 2 <y Ay < f x) » xxy < n = f(xxy) # 0)
(hf3 : f (i+1) = Nat.minFac (i+1))
(hf4 : V a, (Nat.Prime a A a < j)
+ f ((i+1)*a) = Nat.minFac ((i+1)*a))
(hf5 : Vm, £fm < (i+1))
: {F : final_FS (i+1) n // Vm, F.1 m < (i+1)} :=
match ps with
| <[], ps_props) => -- Base case
¢ (£, nhf1, ... >, hfb5 )
| ([p], ps_props) =>
if hcond : p > £ (i+1) V (i+1)*p > n then

¢ (£, hfl, ... ), hf5 )
else
let f' := updateFunction f (p * (i+1)) p
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-— create an empty sorted_bounded_list
let ps' := empty_sorted_bounded_list (i+1) (p+1)
-— construct mecessary propositions
processPrimes_complete n i p hi ps' hps' f' hfl' hf2' hf3' hf4'
- hfb'
| {p :: ps', ps_props) =>
if hcond : p > £ (i+1) V (i+1)*p > n then

¢ (£, hf1, ... ), hf5 )

else
let f' := updateFunction f (p * (i+1)) p
let ps_new : sorted_bounded_list (i+1) (p+1)
= qrps', oo, ol

-— construct necessary propositions
processPrimes_complete n i p hi ps' hps' f' hfl' hf2' hf3' hf4d'
— hfb!'

Below is a breakdown of each hypothesis:

hf1 This proposition ensures that f(m) never contains invalid data: it is always equal
to zero or the least factor of m.

hf2 This is the proposition part of type “final FSin”. It ensures that every number
before the current call of processPrimes_complete is correct. This proposition
is invariant during the recursion, we only need to show that the update function
will not change anything in the previous domain.

hf3 This proposition indicates £(i + 1) is also set to its least factor. Same as hf2, it
can also be considered invariant during the recursion.

hf4 This proposition is the core of processPrimes_complete. It ensures that for
every prime a not exceeding j, £((1 + 1) x a) is directly assigned to the correct
least factor. During the recursion of processPrimes_complete, after prime p
is processed, j is updated to p for the subsequent recursive call. As j increases
during the recursion, this proposition will ultimately be equivalent to

Va, <Nat.P7’z'me aNa<(i+ 1)) — f((z +1)- a) = Nat.minFac((@' +1)- a).

We can then combine it with hf2 and hf3 to get the desired proposition part
of final FS (i+1) n.
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hf5 This proposition states an upper bound, guaranteeing that the range of f(m)
never exceeds i + 1. It is crucial for EulerSieveAux_complete. We need it to
tell that a marked number is indeed a composite number.

The definition inside processPrimes_complete follows a pattern match on the
prime list:

e Base Case: The prime list is empty. In this branch, the function simply
packages the current least factor function f (together with the input hypotheses)
into an element of type final FS (i+1) n.

e Recursive Case: The prime list contains a singleton [p| or more elements
(p :: ¢ = ps’). In this branch, the function first checks a condition:

— Ifp>f(i+1)or(i+1)+*p > n, then no further update is necessary and
the current state is packaged accordingly.

— Otherwise, the least prime function is updated at index (i +1)*p via
updateFunction, and processPrimes_complete increases j to p, and re-
curses on the tail of the prime list.

Hence, we build processPrimes_complete and ensure that it will output a type
of final FS (i+1) n with upper bound as desired.

4.5.2 EulerSieveAux complete

The function EulerSieveAux complete is the Expansion of EulerSieveAux. It
recursively extends the sieve from the current index i up to n and updates the current
prime list and least factor function. The function calls processPrimes_complete to
mark the multiples of ¢ + 1 and then enters recursion. In the end, it returns a type
final PS n and a type final FS n n

A simplified code fragment is provided below:

def EulerSieveAux_complete (n i: Nat)(hi: 2 < i)(hin: i < n)
(PS : final_PS i) (F : final FS i n) (hF: Vm, Fm < i)
(final_PS n) x (final_FS n n) :=
if h : 1 = n then
(PS, F) -- Base case: 1% reached the upper bound n.
else
have hi' : 2 < i+l := by linarith
have hi'n : i+l < n := 1t_iff_le_and_ne.mpr ¢hin, h)
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let {({ps, psPropl), psProp2) := PS
let (f, fProp) :=F

if hval : £ (i+1) = 0 then -- Case: t+1 is prime.
let newps := ps ++ [i+1]
let newF := updateFunction f (i+1) (i+1)

-— construct necessary propositions

let F' := processPrimes_complete n i 1 hi newPS ... newF ...
EulerSieveAux_complete n (i+1) hi' hi'n ((newps,...), ...) F'.1 F'.2
else -- Case: 1+1 1is compostite.

-— we only change the bound of PS

let newPS : sorted_bounded_list (i+1) 2 := ...

-— construct mecessary propositions

let F' := processPrimes_complete n i 1 hi newPS ... f
EulerSieveAux_complete n (i+1) hi' hi'n <(newPS,...) F'.1 F'.2

The code is very straightforward. The function mainly reflects the original EulerSieveAux.
It does not need to construct many extra propositions to make the recursive calls.
We only need to make sure that the updated prime list and the least factor function
still belong to the final types.
However, note that f(i4+1) # 0 does not necessarily indicate that i+1 is composite.
If f(i+1) =i+1, then i+ 1 is prime, and this is entirely permissible in the final FS
type. To correctly infer the status of 4 1, we must combine the information provided
by the hypothesis hF' : Vm, F'm < i, which can be inferred by the proposition part of
the processPrimes_complete’s return value(where hf5 is used for).

4.5.3 EulerSieve_complete

The top-level function EulerSieve complete provides the fully verified Euler
Sieve for any natural number n (with 2 < n). It sets up the initial prime list and least
factor function, then calls EulerSieveAux_complete to recursively build the complete
sieve. It returns a type final PS n and a type final FS n n, which guarantees the
correctness of the sieve’s outputs.

A simplified code fragment is given below:

def EulerSieve_complete (n : Nat) (hn : 2 < n)
: final PS n x final FS n n :=
let PS_init : final_PS 2 :=
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¢ [2], ...> -- 4nitial prime list with proof
let f := updateFunction (updateFunction (fun _ => 0) 2 2) 4 2
let F_init : final FS 2 n :=
(f, ...> —— initial least factor function with proof
-- Start the auziliary recursion
EulerSieveAux_complete n 2 (by norm_num) hn PS_init F_init (...)

Thus, EulerSieve_complete encapsulates the full verified construction of the Eu-
ler Sieve.

4.6. Results

Our formalization of the Euler Sieve in Lean has been successfully completed
and verified in Lean4 v4.19.0 build for Linux Ubuntu. The final code is over 900
lines. For full details, please visit the GitHub repository: https://github.com/
IsaacLi74/Euler_Sieve.

5. Discussion and future work

In our current formalization, we have rigorously established the correctness of the
Euler Sieve algorithm using the Lean proof assistant. While our approach ensures
precise verification, it does not yet address the proof of linear running time, which
remains an important topic for future development.

Beyond verifying correctness, our methodology demonstrates a systematic frame-
work. The structured design, including explicit states, correctness conditions, and
recursive constructions, provides a general blueprint that can guide the verification
of other sequence-generating algorithms.

Overall, future work may include:

e Formally proving the linear time complexity of the Euler Sieve.

e Extending the framework to verify other sequence-generating algorithms.
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