
Pittsburgh Interdisciplinary Mathematics Review 3 (2025), 82–101

Formal verification of the Euler Sieve via Lean

Isaac (Rucheng) Li

(Communicated by Leonardo Finzi and Raja Krishnaswamy)

Abstract

This paper presents a formal verification of the Euler Sieve algorithm — a linear

variant of the classical Sieve of Eratosthenes — using the Lean proof assistant. We

begin by discussing the traditional Sieve of Eratosthenes and its inherent redundancy

when crossing out composite numbers. We then introduce the Euler Sieve, which

overcomes this drawback by ensuring that each composite number is “marked” only

once, achieving linear time complexity. Finally, we present a Lean formalization that

rigorously verifies the correctness of the Euler Sieve, including definitions, lemmas, and

the overall rigorous recursive structure. To the best of our knowledge, this work is the

first formal proof of the Euler Sieve by an interactive proof assistant.
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Introduction

A natural number greater than 1 is composite if it can be factored as the product

of two numbers greater than 1. Otherwise, a number is prime if it cannot be so

factored. The identification and enumeration of prime numbers constitute a founda-

tional problem in number theory, carrying substantial implications for mathematics

and computer science. A common method for identifying prime numbers is known as

a sieve, an algorithm that begins with the list of numbers from 2 to n and systemati-

cally crosses out all composite numbers, leaving only the primes. Among these prime

sieves, the Sieve of Eratosthenes, dating back to ancient Greece, is particularly no-

table for its conceptual simplicity and historical significance. However, this classical

algorithm suffers from inherent redundancy, resulting in non-linear time complexity.

In the 20th century, as computers emerged, there was a surge of interest in prime

sieving methods. Many scientists tried to address the inefficiency in the Sieve of

Eratosthenes, which led to the creation of numerous prime sieves with linear time

complexity. However, in 1978, Gries and Misra rediscovered and observed a linear

prime sieve which had already been devised in the 18th century — namely, the Euler

Sieve. Remarkably, Leonhard Euler formulated this algorithm long before computers

existed, and it is widely recognized as the very first linear sieve for generating prime

numbers.

In this paper, we present a rigorous formal verification of the Euler Sieve algo-

rithm using the Lean interactive proof assistant. Formal proofs involve encoding
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mathematical statements and their proofs in a formal language that a computer sys-

tem can rigorously check for logical correctness. Lean is a modern, interactive theorem

prover that allows mathematicians and computer scientists to build reliable, formally

verified proofs with absolutely no errors. Formal verification is particularly signifi-

cant in algorithmic number theory, as it guarantees the correctness of computational

methods.

Our formalization explicitly verifies the correctness of the Euler Sieve by establish-

ing that its output — a complete list of primes and an associated function identifying

the smallest prime factor of each integer — is accurate.

1. Background on the Sieve of Eratosthenes

The idea of systematically “sieving” out composite numbers from a list of natural

numbers can be traced back to ancient Greece. The Sieve of Eratosthenes, attributed

to the Greek mathematician Eratosthenes of Cyrene (circa 276–194 BC), is one of

the oldest known algorithms for finding all prime numbers up to a given limit n. In

his work, Eratosthenes proposed listing all integers from 2 to n and then sequentially

crossing out the multiples of each prime, beginning with 2.

1.1. The näıve version

To find all prime numbers not exceeding a positive integer n, we begin with the

list

S = {2, 3, 4, . . . , n}.

The method proceeds as follows:

1. For each number p in S, starting from 2, if p has not been crossed out from the

set, then p is declared prime.

2. Once p is identified as prime, every multiple of p that lies in S (that is, 2p, 3p . . .)

is eliminated from S because they must be composite.

3. This procedure is repeated for the next number in the list that has not yet been

crossed out.

After all numbers in S have been processed in this manner, the remaining ele-

ments of S are exactly the prime numbers up to n.

A very primitive version of the sieve can be described by the following pseudocode:
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function NaiveSieve(n):

A[2..n] = true

for i from 2 to n:

if A[i] is true:

for j from 2*i to n with step i:

A[j] := false

return all i such that A[i] is true

1.2. The optimized version

An important observation is that if n is composite, then it must have a factor less

than or equal to
√
n. Therefore, it suffices to perform the sieving process only for i

up to ⌊
√
n⌋, where ⌊

√
n⌋ is the floor of

√
n — the greatest integer less than or equal

to n.

A further optimization is possible by noting that for a prime i, any multiple k× i

with k < i would have been crossed out already when processing the prime factor of

k. Hence, we can safely begin the inner loop at i2.

This gives the final optimized pseudocode:

function EratosthenesSieve(n):

A[2..n] = true

for i from 2 to floor(sqrt(n)):

if A[i] is true:

for j from i*i to n with step i:

A[j] := false

return all i such that A[i] is true

But still, it maintains the problem of crossing out a composite number several

times. This is crucial and causes the non-linear running time of the algorithm.

1.3. Complexity analysis

Before we delve into the technical details, we briefly explain what we mean by

complexity analysis. In computer science, time complexity analysis measures the

efficiency of an algorithm in terms of the number of operations it performs with

respect to the input size n. For the purpose of this paper, we use the following

definition and notations:

• We say that a sieve algorithm has run time O(f(n)) if there exist constants

C > 0 and n0 ∈ N such that, for all n ≥ n0, the numbers between 2 and n are
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crossed out at most C f(n) times. Hence, O(f(n)) gives an asymptotic upper

bound on the running time.

• We say that a sieve algorithm has run time Ω(f(n)) if there exist constants

C > 0 and n0 ∈ N such that, for all n ≥ n0, the numbers between 2 and n

are crossed out at least C f(n) times. Thus, Ω(f(n)) gives an asymptotic lower

bound on the running time.

• If a sieve algorithm has both an asymptotic upper boundO(f(n)) and an asymp-

totic lower bound Ω(f(n)), we say that it has run time Θ(f(n)).

Specifically, if an algorithm crosses out each number once, its running time is

Θ(n).

Theorem. The Optimized Sieve of Eratosthenes has run time Θ(n log log n).

Proof. For each prime p with p ≤
√
n, the inner loop (which crosses out multiples

of p between p2 and n) executes exactly

L(p) =

⌊
n− p2

p

⌋
+ 1

iterations. Hence, we obtain the following bounds for the number of crossing-out

operations for a fixed prime p:

n

p
− p ≤ L(p) ≤ n

p
− p+ 1.

Summing over all primes p satisfying p ≤
√
n, the total number of crossing-out

operations T (n) satisfies∑
p≤

√
n

(n
p
− p

)
≤ T (n) ≤

∑
p≤

√
n

(n
p
− p+ 1

)
.

We can rewrite the main term as∑
p≤

√
n

n

p
= n

∑
p≤

√
n

1

p
.

A classical result in analytic number theory, known as Mertens’ second theorem,

states that

lim
x→∞

(∑
p≤x

1

p
− log log x

)
= M,

or equivalently, ∑
p≤x

1

p
= log log x + M + O(1),
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where M denotes the Meissel–Mertens constant (approximately 0.261497).

Setting x =
√
n, we obtain∑

p≤
√
n

1

p
= log log

√
n+M +O(1) = log log n− log 2 +M +O(1).

Therefore, the upper bound for T (n) becomes

T (n) ≤ n
(
log log n− log 2 +M +O(1)

)
−

∑
p≤

√
n

(p− 1).

Thus,

T (n) = O(n log log n).

Similarly, the lower bound for T (n) is

T (n) ≥ n
(
log log n− log 2 +M +O(1)

)
−

∑
p≤

√
n

p.

For the sum
∑

p≤
√
n p, observe that

∑
p≤

√
n

p ≤
⌊
√
n⌋∑

i=1

i ≤
√
n(
√
n+ 1)

2
=

n+
√
n

2
,

which does not alter the overall complexity. Thus,

T (n) = Ω(n log log n).

Therefore, we deduce that

T (n) = Θ(n log log n).

This theorem implies that even an optimized version of the sieve algorithm is

asymptotically larger than a linear algorithm (an algorithm with run time O(n)).

2. Improvement in the Euler Sieve

In later developments, efforts were made to address the redundancy inherent in

the Sieve of Eratosthenes. In the 18th century, Leonhard Euler introduced a new

prime sieve designed to avoid repeatedly crossing out the same composite numbers,

achieving a linear time complexity.

The key idea is to ensure that each composite number is “marked” exactly once,

using only its smallest prime factor. This refined method is now commonly known as

the Euler Sieve. Moreover, the Euler Sieve produces not only a prime list, but also

a least factor function. It is particularly useful because the least factor function can
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accelerate rapid factorization.

In the classical Sieve of Eratosthenes, one begins with the list

S = {2, 3, 4, . . . , n},

and proceeds by crossing out every composite number as a multiple of some prime.

In contrast, the Euler Sieve avoids the simple crossing out of numbers. Instead, it

marks each number with its least factor(equivalent to its least prime factor, which is

greater than 1) using the function f . Consequently, a number i for which f(i) ̸= i is

a composite number.

The Euler Sieve starts with a function f which for all x,

f(x) = 0,

and an empty prime list

ps = [].

The method proceeds as follows:

1. For each number i in the domain {2, . . . , n}, if f(i) is not yet assigned (i.e.,

f(i) = 0), then i is recognized as prime, and we set f(i) := i. Then, we add i

to the end of the prime list.

2. For each i and for each prime p from the prime list so far, if p ≤ f(i) and

(i × p) ≤ n, the number i × p is marked by setting f(i × p) = p. This ensures

that i× p is assigned its least factor.

3. This procedure is repeated by increasing i by 1 till it reaches n.

The pseudocode for the Euler Sieve is presented below:

function EulerSieve(n):

f[2..n] = 0

ps = []

for i from 2 to n: // outer loop

if f[i] == 0:

f[i] = i

append i to ps

for each prime p in primes: // inner loop

if p > f[i] or i * p > n:

break

f[i * p] = p

return (primes, f)
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We observe that the assignment f[i * p] = p uses a prime p which by construc-

tion satisfies p ≤ f [i] (the least factor of i). So it is indeed the smallest prime factor of

i× p. This guarantees that each composite is marked exactly once, just as intended,

and yields an overall linear time complexity. All we need to ensure is that each state

in the looping process gives a correct prime list and a correct least factor function.

More details will be shown in section §4. Formalization of the Euler Sieve. Note,

however, that in our formalization, we only verified the algorithm’s correctness, not

its linear running time. We will describe current progress made on extending this

formalization in section §5. Discussion and Future Work.

3. The Lean prover

In recent years, the pursuit of rigorous, error-free mathematics has led to the

development of formal verification tools known as proof assistants. These systems

enable mathematicians and computer scientists to construct and verify proofs with

machine-checked precision, ensuring that every logical inference adheres strictly to

foundational rules. Among these tools, Lean has emerged as a prominent platform,

blending expressive mathematical language with robust verification capabilities.

3.1. Overview of Lean

Lean is an interactive theorem prover and functional programming language de-

veloped to support formal reasoning in mathematics and computer science. It is based

on dependent type theory, a framework that unifies programming and logic, allowing

for the expression of complex mathematical concepts and the construction of proofs

within the same language.

Lean’s design emphasizes both automation and user interaction. It offers powerful

tools for automated reasoning, such as tactics that can simplify proof construction,

while also allowing users to guide the proof process interactively. This balance makes

Lean suitable for a wide range of formalization tasks, from verifying simple algorithms

to formalizing advanced mathematical theories.

3.2. The Mathlib library

A cornerstone of Lean’s ecosystem is mathlib, an extensive library of formalized

mathematics developed collaboratively by the Lean community. Mathlib encompasses

a broad spectrum of mathematical domains, including algebra, analysis, topology,

and number theory. Its comprehensive collection of definitions, theorems, and proofs
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serves as a valuable resource for users aiming to build upon existing formalizations

or contribute new ones.

The collaborative nature of mathlib fosters a dynamic environment where con-

tributors can share their work, receive feedback, and collectively advance the formal-

ization of mathematics. This communal effort not only accelerates the development

of the library but also promotes best practices in formal proof construction.

3.3. Applications and impact

Lean has been employed in various significant formalization projects, demonstrat-

ing its versatility and robustness. Notably, it has been used to formalize complex

mathematical results, such as the proof of the Liquid Tensor Experiment led by Peter

Scholze and the formalization of the Polynomial Freiman–Ruzsa (PFR) conjecture by

Terence Tao and collaborators. These endeavors highlight Lean’s capacity to handle

intricate mathematical arguments and its growing role in contemporary mathematical

research.

Beyond pure mathematics, Lean’s formal verification capabilities have applica-

tions in computer science, particularly in verifying the correctness of software and

algorithms.

3.4. Getting started with Lean4 for beginners

For readers new to formal verification and theorem proving, learning Lean4 might

seem daunting initially. Here we list a recommended sequence of resources:

• The Natural Number Game1: This interactive web-based tutorial intro-

duces the basics of formal proofs in Lean through a gamified approach. Users

solve progressively challenging puzzles involving natural numbers, arithmetic,

and logic.

• Mathematics in Lean2: This free online textbook provides a comprehensive

introduction to using Lean for formal mathematics. It covers foundational con-

cepts, essential techniques, and practical examples in different mathematical

branches.

• Theorem Proving in Lean 43: This is also a free online textbook. It is an

authoritative resource that serves as both a reference manual and a textbook,

1https://adam.math.hhu.de/#/g/leanprover-community/nng4
2https://leanprover-community.github.io/mathematics_in_lean/
3https://leanprover.github.io/theorem_proving_in_lean4/
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describing Lean’s core features, advanced concepts, and programming strategies

in detail.

• Lean 4 Web4: This online platform enables immediate experimentation with

Lean4 and Mathlib without any installation. Beginners can quickly test exam-

ples and familiarize themselves with Lean’s syntax and proof style interactively.

In the subsequent sections, we will delve into the formalization of the Euler Sieve

algorithm within Lean, illustrating how the prover’s features facilitate the rigorous

verification of algorithmic correctness.

4. Formalization of the Euler Sieve

In this section, we present our Lean formalization of the Euler Sieve(the Linear

Sieve). Our approach is organized into several layers, each building systematically

upon the previous one to ensure the correctness of the algorithm by construction.

First, we use functions to represent arrays and rewrite the algorithm in a recursive

style. Then, we introduce two final types that explicitly represent the state at each

stage of computation. After establishing several auxiliary lemmas to support the

subsequent correctness proofs, we provide a detailed, step-by-step explanation of the

three complete functions. These functions extend the original recursive definition by

embedding correctness proofs within the recursion itself, explicitly passing verified

states as parameters. Ultimately, this structured approach culminates in a fully

verified construction of the Euler Sieve.

4.1. Simulating the update of functions

In Lean, we simulate an update of a function by returning a new function. To

achieve this, we define the following Lean function:

def updateFunction (f : Nat → Nat) (k v : Nat) : Nat → Nat :=

fun x => if x = k then v else f x

This updateFunction works as follows: it takes an existing function f , an index

k, and a new value v. It returns a new function which, when applied to an index x,

checks if x is equal to k. If so, it returns v. Otherwise, it returns the original value

f(x). This provides a purely functional way to simulate the update operation.

4https://live.lean-lang.org/
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4.2. Rewriting the algorithm recursively

Since Lean is a functional programming language, we want to rewrite the for-loop

version of the Euler Sieve in Section §2 into a recursive version. The outer loop in the

pseudocode over i becomes EulerSieveAux, and the inner loop over the current prime

list becomes processPrimes. This approach preserves the behavior of the original

Euler Sieve while ensuring termination can be verified in Lean.

The inner loop of the Euler Sieve is defined as follows:

def processPrimes (i : Nat) (f : Nat → Nat) (ps : List Nat)

(n : Nat): Nat → Nat :=

match ps with

-- if no primes in prime list, return f

| [] => f

-- else, split the prime list ps to an element p and the following

sublist ps'(process the next prime after p)↪→

| p :: ps' =>

if p > f i ∨ i * p > n then f

else

let f' := updateFunction f (i * p) p

processPrimes i f' ps' n

The outer loop of the Euler Sieve is defined as follows:

def EulerSieveAux (n i : Nat) (ps : List Nat) (f : Nat → Nat) :

(List Nat × (Nat → Nat)) :=

if i > n then (ps, f)

else

let (ps', f') :=

if f i = 0 then

-- i is prime, update f

let fNew := updateFunction f i i

-- enter inner loop

(ps ++ [i], processPrimes i fNew (ps ++ [i]) n)

else

-- enter inner loop

(ps, processPrimes i f ps n)

EulerSieveAux n (i + 1) ps' f'

-- ensures the recursion will terminate

termination_by n + 1 - i

92



FORMAL VERIFICATION OF THE EULER SIEVE VIA LEAN

Finally, call EulerSieveAux with EulerSieve to pack everything together:

def EulerSieve (n : Nat) : (List Nat × (Nat → Nat)) :=

-- start sieving at 2, set initial list to empty and fuction to

zero↪→

EulerSieveAux n 2 [] (fun _ => 0)

4.3. Necessary types

To maintain the correctness invariants throughout the recursion, we define sev-

eral dependent types that bundle both data and their correctness properties. This

approach ensures that once a value of these types is constructed, it automatically

carries all necessary information, so subsequent functions can rely on it without an

additional proof burden. The idea is to use these types within the recursive function,

allowing us to construct an induction proof during recursion.

4.3.1 final PS

We begin with a predicate to ensure that a list of natural numbers is strictly sorted

in ascending order:

def list_sorted : List Nat → Prop

| [] => True

| [x] => True

| x::y::l => x < y ∧ list_sorted (y::l)

Next, we package this property together with a bounding condition, creating the

sorted bounded list type:

def sorted_bounded_list (i j: Nat) : Type :=

{ ps : List Nat // list_sorted ps ∧ (∀ x ∈ ps, j ≤ x ∧ x ≤ i) }

An object of type sorted bounded list i j is thus a sub-type of containing:

1. A list ps of natural numbers.

2. A proposition that ps is sorted in ascending order.

3. A proposition that every element of ps lies between j and i.

While sorted bounded list i j guarantees sorting and bounding, we still need

a proposition that this list exactly consists of the primes in the specified range. We

capture this condition with correct PS:
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def correct_PS : sorted_bounded_list i j → Prop :=

--split data and proposition from sorted_bounded_list i j

fun 〈ps, _h〉 =>

∀ x, j ≤ x ∧ x ≤ i → (x ∈ ps ↔ Nat.Prime x)

Thus, correct PS states that for every x between j and i, membership in ps is

equivalent to x being a prime.

Finally, we combine these notions into final PS:

def final_PS (i: Nat) : Type :=

{ ps : sorted_bounded_list i 2 // correct_PS ps }

4.3.2 final FS

Similarly, we need to formalize the least factor function with another final type:

def final_FS (i n : Nat) : Type :=

{ f : Nat → Nat //

(∀ m, (f m = 0) ∨ (f m = Nat.minFac m)) ∧
(∀ x, 2 ≤ x ∧ x ≤ i →

f x = Nat.minFac x ∧
∀ y, (Nat.Prime y ∧ 2 ≤ y ∧ y ≤ f x) →

x * y ≤ n → f (x * y) ̸= 0) }

An element of type final FS i n therefore ensures:

1. For any natural number m, f(m) is either 0 or the least factor of m.

2. For each x in the range [2, i], f(x) has already been correctly set to the least

factor of x.

3. Crucially, whenever x × y ≤ n and y is a prime that less or equal to the

least factor of x, we must not leave f(x× y) at 0 (which should be the least

factor of x × y). This condition enforces that every composite discovered in

processPrimes is indeed marked correctly.

4.4. Lemmas for proofs

Several auxiliary lemmas are used to support the proofs of correctness in our

formalization. We only show one of the key lemmas in this paper.
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Lemma 4.1 (mul of least). Let p be a prime number and let x ≥ 2 be an integer. If

p is less than or equal to the least factor of x, then the smallest factor of p× x is p.

lemma mul_of_least {p x : Nat} (hp : Nat.Prime p) (hx : 2 ≤ x)

(h : p ≤ Nat.minFac x) : Nat.minFac (p * x) = p := by

have hl: Nat.minFac (p * x) ≤ p := by

apply Nat.minFac_le_of_dvd

apply Nat.Prime.two_le hp

apply Nat.dvd_mul_right

have hg: p ≤ Nat.minFac (p * x) := by

let q := Nat.minFac (p * x)

have hq_dvd : q | p * x := by apply Nat.minFac_dvd

have hq_nz : p * x ̸= 1 := by aesop

have hq_prime : Nat.Prime q := Nat.minFac_prime hq_nz

have hq_cases : (q | p) ∨ (q | x) := (Nat.Prime.dvd_mul

hq_prime).mp hq_dvd↪→

match hq_cases with

| Or.inl hqp =>

have q_eq_p : q = p := (Nat.prime_dvd_prime_iff_eq hq_prime

hp).mp hqp↪→

linarith

| Or.inr hqx =>

apply le_trans h (Nat.minFac_le_of_dvd (Nat.Prime.two_le

hq_prime) hqx)↪→

linarith

Explanation:

hl : First, it proves that the least factor of p× x is less than or equal to p by using

the property that the least factor must be less than or equal to other factors.

hg : Second, it shows that p is less than or equal to the least factor of p×x by letting

q be the least factor of p× x and using the fact that q divides p× x. Because q

is also a prime, we can analyze the two possible cases — either q divides p or q

divides x — and apply the given hypothesis that p is less than or equal to the

least factor of x.

Then, we combine them together to get p is equal to the least factor of p× x.
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4.5. Complete functions

The final piece of our formalization consists of three complete functions that in-

tegrate all previous components to yield a fully verified Euler Sieve. It expands the

previous recursive functions and passes the correct propositions as parameters with

proofs. Thus, the code is organized in such a way that it automatically includes the

required proofs during recursion. In this approach, the induction proof step is directly

embedded within the recursive construction, streamlining the verification process.

4.5.1 processPrimes complete

This function is the expanded version of processPrimes. It integrates all the

necessary proof obligations with the algorithmic update of the least prime func-

tion f . In every recursive call, the function carries along five key propositions

(named hf1 through hf5) that ensure the correctness of the sieve. In the end,

processPrimes complete returns a type final FS (i+1) n with its range upper

bound.

Here is the simplified code fragment:

def processPrimes_complete (n i j : Nat) (hi : 2 ≤ i)

(ps : sorted_bounded_list (i+1) (j+1)) (hps : correct_PS ps)

(f : Nat → Nat)

(hf1 : ∀ m, (f m = 0) ∨ (f m = Nat.minFac m))

(hf2 : ∀ x, 2 ≤ x ∧ x ≤ i →
f x = Nat.minFac x ∧
∀ y, (Nat.Prime y ∧ 2 ≤ y ∧ y ≤ f x) → x*y ≤ n → f(x*y) ̸= 0)

(hf3 : f (i+1) = Nat.minFac (i+1))

(hf4 : ∀ a, (Nat.Prime a ∧ a ≤ j)

→ f ((i+1)*a) = Nat.minFac ((i+1)*a))

(hf5 : ∀ m, f m ≤ (i+1))

: {F : final_FS (i+1) n // ∀ m, F.1 m ≤ (i+1)} :=

match ps with

| 〈[], ps_props〉 => -- Base case

〈 〈 f, hf1, ... 〉, hf5 〉
| 〈[p], ps_props〉 =>

if hcond : p > f (i+1) ∨ (i+1)*p > n then

〈 〈 f, hf1, ... 〉, hf5 〉
else

let f' := updateFunction f (p * (i+1)) p
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-- create an empty sorted_bounded_list

let ps' := empty_sorted_bounded_list (i+1) (p+1)

-- construct necessary propositions

......

processPrimes_complete n i p hi ps' hps' f' hf1' hf2' hf3' hf4'

hf5'↪→

| 〈p :: ps', ps_props〉 =>

if hcond : p > f (i+1) ∨ (i+1)*p > n then

〈 〈 f, hf1, ... 〉, hf5 〉
else

let f' := updateFunction f (p * (i+1)) p

let ps_new : sorted_bounded_list (i+1) (p+1)

:= 〈 q :: ps', ... , ... 〉
-- construct necessary propositions

......

processPrimes_complete n i p hi ps' hps' f' hf1' hf2' hf3' hf4'

hf5'↪→

Below is a breakdown of each hypothesis:

hf1 This proposition ensures that f(m) never contains invalid data: it is always equal

to zero or the least factor of m.

hf2 This is the proposition part of type “final FS i n”. It ensures that every number

before the current call of processPrimes complete is correct. This proposition

is invariant during the recursion, we only need to show that the update function

will not change anything in the previous domain.

hf3 This proposition indicates f(i+ 1) is also set to its least factor. Same as hf2, it

can also be considered invariant during the recursion.

hf4 This proposition is the core of processPrimes complete. It ensures that for

every prime a not exceeding j, f((i+ 1)× a) is directly assigned to the correct

least factor. During the recursion of processPrimes complete, after prime p

is processed, j is updated to p for the subsequent recursive call. As j increases

during the recursion, this proposition will ultimately be equivalent to

∀a,
(
Nat.Prime a∧ a ≤ (i+1)

)
→ f

(
(i+1) · a

)
= Nat.minFac

(
(i+1) · a

)
.

We can then combine it with hf2 and hf3 to get the desired proposition part

of final FS (i+1) n.
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hf5 This proposition states an upper bound, guaranteeing that the range of f(m)

never exceeds i+ 1. It is crucial for EulerSieveAux complete. We need it to

tell that a marked number is indeed a composite number.

The definition inside processPrimes complete follows a pattern match on the

prime list:

• Base Case: The prime list is empty. In this branch, the function simply

packages the current least factor function f (together with the input hypotheses)

into an element of type final FS (i+1) n.

• Recursive Case: The prime list contains a singleton [p] or more elements

(p :: q :: ps′). In this branch, the function first checks a condition:

– If p > f(i+ 1) or (i+ 1) ∗ p > n, then no further update is necessary and

the current state is packaged accordingly.

– Otherwise, the least prime function is updated at index (i+ 1) ∗ p via

updateFunction, and processPrimes complete increases j to p, and re-

curses on the tail of the prime list.

Hence, we build processPrimes complete and ensure that it will output a type

of final FS (i+1) n with upper bound as desired.

4.5.2 EulerSieveAux complete

The function EulerSieveAux complete is the Expansion of EulerSieveAux. It

recursively extends the sieve from the current index i up to n and updates the current

prime list and least factor function. The function calls processPrimes complete to

mark the multiples of i + 1 and then enters recursion. In the end, it returns a type

final PS n and a type final FS n n

A simplified code fragment is provided below:

def EulerSieveAux_complete (n i: Nat)(hi: 2 ≤ i)(hin: i ≤ n)

(PS : final_PS i) (F : final_FS i n) (hF: ∀ m, F m ≤ i)

: (final_PS n) × (final_FS n n) :=

if h : i = n then

(PS, F) -- Base case: i reached the upper bound n.

else

have hi' : 2 ≤ i+1 := by linarith

have hi'n : i+1 ≤ n := lt_iff_le_and_ne.mpr 〈hin, h〉
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let 〈〈ps, psProp1〉, psProp2〉 := PS

let 〈f, fProp〉 := F

if hval : f (i+1) = 0 then -- Case: i+1 is prime.

let newps := ps ++ [i+1]

let newF := updateFunction f (i+1) (i+1)

-- construct necessary propositions

......

let F' := processPrimes_complete n i 1 hi newPS ... newF ...

EulerSieveAux_complete n (i+1) hi' hi'n ⟨⟨newps,...⟩, ...⟩ F'.1 F'.2

else -- Case: i+1 is composite.

-- we only change the bound of PS

let newPS : sorted_bounded_list (i+1) 2 := ...

-- construct necessary propositions

......

let F' := processPrimes_complete n i 1 hi newPS ... f ...

EulerSieveAux_complete n (i+1) hi' hi'n 〈newPS,...〉 F'.1 F'.2

The code is very straightforward. The function mainly reflects the original EulerSieveAux.

It does not need to construct many extra propositions to make the recursive calls.

We only need to make sure that the updated prime list and the least factor function

still belong to the final types.

However, note that f(i+1) ̸= 0 does not necessarily indicate that i+1 is composite.

If f(i+1) = i+1, then i+1 is prime, and this is entirely permissible in the final FS

type. To correctly infer the status of i+1, we must combine the information provided

by the hypothesis hF : ∀m,Fm ≤ i, which can be inferred by the proposition part of

the processPrimes complete’s return value(where hf5 is used for).

4.5.3 EulerSieve complete

The top-level function EulerSieve complete provides the fully verified Euler

Sieve for any natural number n (with 2 ≤ n). It sets up the initial prime list and least

factor function, then calls EulerSieveAux complete to recursively build the complete

sieve. It returns a type final PS n and a type final FS n n, which guarantees the

correctness of the sieve’s outputs.

A simplified code fragment is given below:

def EulerSieve_complete (n : Nat) (hn : 2 ≤ n)

: final_PS n × final_FS n n :=

let PS_init : final_PS 2 :=
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〈 [2], ...〉 -- initial prime list with proof

let f := updateFunction (updateFunction (fun _ => 0) 2 2) 4 2

let F_init : final_FS 2 n :=

〈 f, ...〉 -- initial least factor function with proof

-- Start the auxiliary recursion

EulerSieveAux_complete n 2 (by norm_num) hn PS_init F_init (...)

Thus, EulerSieve complete encapsulates the full verified construction of the Eu-

ler Sieve.

4.6. Results

Our formalization of the Euler Sieve in Lean has been successfully completed

and verified in Lean4 v4.19.0 build for Linux Ubuntu. The final code is over 900

lines. For full details, please visit the GitHub repository: https://github.com/

IsaacLi74/Euler_Sieve.

5. Discussion and future work

In our current formalization, we have rigorously established the correctness of the

Euler Sieve algorithm using the Lean proof assistant. While our approach ensures

precise verification, it does not yet address the proof of linear running time, which

remains an important topic for future development.

Beyond verifying correctness, our methodology demonstrates a systematic frame-

work. The structured design, including explicit states, correctness conditions, and

recursive constructions, provides a general blueprint that can guide the verification

of other sequence-generating algorithms.

Overall, future work may include:

• Formally proving the linear time complexity of the Euler Sieve.

• Extending the framework to verify other sequence-generating algorithms.
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