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0. What is Beach Math?

It’s 6:00 in the morning, and you’re watching the sunrise after a long night of

clubbing in Ibiza, Spain. You bite into a warm waffle that you bought from a place

nearby that you have already forgotten. As your toes sink into the cool sand and you

start to think about the events of the night, your mind starts wandering towards math,

towards Beach Math. These problems are for your most contemplative moments, in

Ibiza or anywhere you might happen to be. We hope you like them!

1. Problems

1.1. Calm Waves

Problem 1. (From the movie A Brilliant Young Mind.) Given a row of cards, some

face-up and some face-down, a move consists of flipping a face-down card and also

the card immediately to its right, if there is one.

Suppose you start with n cards laid out in a row, all face-down, and you keep making

moves until you can’t anymore. Show that, regardless of the sequence of moves you

made, this process must terminate with all cards face-up.
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1.2. Rough Waters

Problem 2. Alice has a very large house – so large, in fact, that it’s unbounded as

a subset E ⊆ R3. Moreover, it’s so spacious that her pet bird, Coco, can fly in a

straight line between any two points inside the house without any issue; it’s convex

as a subset E ⊆ R3. Unfortunately, Coco is a very claustrophobic bird. She needs

to be able to fly arbitrarily far in some possible direction from some starting point in

the house without running into the walls – otherwise she’ll be unhappy.

In symbols: if (X, ∥ · ∥) is a normed vector space and E ⊆ X, then Coco is unhappy

in E if and only if ∀p ∈ E, ∀v ∈ X \ {0}, ∃t ∈ [0,∞), p + tv ̸∈ E. We’ll say Coco is

happy in E when she is not unhappy in E.

(a) Show that Coco is happy in Alice’s house, i.e. show that every unbounded

convex subset of R3 contains an infinite ray.

(Hint: Reach for the moon – try to show for all n ∈ N that unbounded convex

subsets of Rn contain an infinite ray. I promise this is easier.)

(b) Alice is leaving for vacation, and has dropped Coco off to stay at Bob’s house.

Bob was told “make sure your place is convex and unbounded before taking

Coco in,” and he did so. However, Bob is an infinite-dimensional creature; his

house is a convex unbounded subset of the sequence space

ℓ∞ = {x ∈ RN | ∥x∥∞ < ∞},

where

∥x∥∞ = sup
n∈N

|xn|.

Must Coco be happy in Bob’s house? Explain.

See Figure 1 for a two-dimensional diagram of the situation here.
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1.3. Tsunami

Problem 3 (Monsky). We will say that an m-tuple of nonnegative real numbers

(a1, . . . , am) is a dissection of the square when we may write [0, 1]2 as a union of m

triangles Ti with disjoint interiors such that ai is the area of Ti for each i; see Figure

2 for an example. Observe that we must have
∑m

i=1 ai = 1 by construction.

(a) Prove that we may dissect the unit square S = [0, 1]2 into N equal-area triangles

with disjoint interiors, i.e. (1/N, . . . , 1/N) is a dissection of the square, if and

only if N is even.

(b) More generally, if (a1, . . . , am) is a dissection of the square, show that there is

a polynomial p with integer coefficients such that p(a1, . . . , am) =
1
2
.

Use this to provide another proof that (1/N, . . . , 1/N) is not a dissection of the

square if N is odd.

(Part (a) is rather challenging, and part (b) even more so.)
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1.4. Figures for Rough Waters and Tsunami

Rough Waters:

Figure 1: Here’s an unbounded convex set E ⊆ R2, shaded in gray. If Coco lived
in E, she would be happy, as she can start at the red point and fly straight in the
direction of the red arrow without leaving the set. Note, though, that not every point
and every direction works: if Coco starts from the blue point and flies in either of
the blue directions, she will eventually leave E. All you need to do is show that some
point and some direction works.

Tsunami:

Figure 2: Geometric dissection of the square into m = 17 triangles T1, . . . , T17. The
corresponding dissection as we defined it is (a1, . . . , a17), where Ti has area ai.
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2. Solutions

2.1. Calm Waves

Let a face-down card have value 1 while a face-up card has value 0. Any state

of the game can therefore be written as a sequence of n binary digits, starting at n

1s. Note that any move must necessarily decrease the value of this binary number,

and the only way one cannot make a move is if there are no 1s, i.e., all the cards are

face-up. Hence, eventually we must reach the state of all 0s.
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2.2. Rough Waters

Part (a): We’ll take the hint and prove that every convex subset of Rn contains an

infinite ray by induction on n ≥ 1. Convex subsets of R = R1 are precisely intervals,

and easily every unbounded interval I will contain an interval of the form (−∞, a] or

[a,∞) for some a ∈ R. So let n ∈ N with n ≥ 1 and suppose that every unbounded

convex subset of Rk for 1 ≤ k ≤ n contains an infinite ray. Let C ⊆ Rn+1 be convex,

unbounded. We will assume C has nonempty interior in Rn+1; we’ll see later how we

can discharge this assumption.

Let p ∈ C◦, Sn ⊆ Rn+1 be the unit sphere, and let’s define f : Sn → [0,∞] such

that f(v) is “the farthest we can travel from p in the direction v while staying inside

C.” In symbols:

f(v) = sup{t ≥ 0 : p+ tv ∈ C}.

Because p is an interior point of C, f is a continuous function. Towards a con-

tradiction, suppose f(v) < ∞ for every v ∈ Sn. Then by compactness of the unit

sphere (since we’re working in a finite-dimensional space), f is bounded, so there is

0 < α < ∞ such that for every v ∈ Sn, if p + tv ∈ C, then t ≤ α. (We know α > 0

since p ∈ C◦ and balls are convex.) If y ∈ C, then the line segment from y to p is in

C, and we can write

y = p+ t

(
y

∥y∥

)
∈ C

for t = ∥y∥, and hence ∥y − p∥ = t ≤ α by definition of α. So C ⊆ B(p, α),

contradicting the fact that C is unbounded. Hence there is v ∈ Sn such that f(v) =

∞, and hence p+ tv ∈ C for every t ≥ 0 as desired.

If C◦ = ∅, then convexity implies that C is contained in an affine subspace of

lower dimension, and hence by the induction hypothesis C contains an infinite ray

in said subspace, which is an infinite ray in Rn+1. Hence we conclude that every

unbounded convex subset of Rn contains an infinite ray for n ≥ 1. In particular, we

can settle the question raised in part (a): Coco is happy in Alice’s house.

Part (b): Unfortunately, Coco need not be happy in Bob’s house; we might

expect this since the proof for (a) relied on compactness of the unit sphere, which

is a fundamentally finite-dimensional phenomenon. (Indeed, compactness of the unit

sphere of a normed space is equivalent to it being finite-dimensional.) Suppose Bob’s

house is given by the set

C∗ = conv{nen : n ∈ N},

where en is the sequence with a 1 at position n and zeroes elsewhere, and conv denotes

the convex hull, which can be constructed impredicatively: convE is the intersection

of all convex sets containing E; it’s the smallest convex set containing E. Observe
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that C∗ ⊆ ℓ∞ is convex by definition, and unbounded since

∥nen∥∞ = n → ∞

as n → ∞.

We claim C∗ contains no infinite ray. Let p ∈ C∗, v ∈ ℓ∞ with ∥v∥∞ = 1, t ≥ 0.

If p + tv ∈ C∗, then |pn + tvn| ≤ n for every n. Choose n such that vn ̸= 0; without

loss of generality we may assume vn > 0. Then we may always choose t large enough

so that |pn + tvn| > n, and hence sup{t ≥ 0 : p + tv ∈ C∗} < ∞ for every v ∈ ℓ∞

with ∥v∥∞ = 1. That is, C∗ contains no infinite ray, as desired.

Remark 2.1. The set C∗ has empty interior in ℓ∞. If we assume Bob’s house has

nonempty interior in ℓ∞, can we guarantee that Coco is happy? Or is there still a

chance she is unhappy?
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2.3. Tsunami

Part (a): If N ≥ 1 is even, write N = 2k for k ∈ N and break

[0, 1]2 =
k−1⋃
i=0

([
i

k
,
i+ 1

k

]
× [0, 1]

)
into k vertical rectangles of equal area. Cutting each one along the diagonal witnesses

that (1/N, . . . , 1/N) is a dissection of the square. Proving that

(1/N, . . . , 1/N) is a dissection ⇒ N is even

is much harder; we’ll need some clever tools from topology and algebra. We follow

the excellent exposition of Moragues, 2016, as well as Monsky’s original 1970 paper.

The first tool we’ll need is the two-dimensional version of Sperner’s lemma:

Lemma 2.2. Let Σ be a triangulation of an equilateral triangle ∆, and label its

vertices 1, 2, 3 such that vertices of ∆ receive pairwise distinct labels, and any vertex

refining the edge from vertex i to vertex j of ∆ receives label i or j. Then Σ has an

odd number of rainbow triangles: triangles labeled 1, 2, 3.

To prove this, we recall the handshake lemma: if G = (V,E) is a finite graph, then∑
v∈V

deg(v) = 2|E|.

Proof of Sperner’s lemma. Declare every triangle of Σ to be the vertex of a graph,

and add an additional vertex on the outside. Draw an edge between vertices v, w

whenever they are separated by a 1-2 edge. The properties of the coloring ensure

that the outside vertex has odd degree. We claim every interior vertex has degree 0,

1, or 2. Indeed:

• a triangle could have all its vertices colored without both 1 and 2; this corre-

sponds to degree 0.

• a triangle could have vertices colored 1 and 2, but not rainbow: this corresponds

to degree 2.

• a triangle could be rainbow; this corresponds to degree 1.

By the handshake lemma, every finite graph has an even number of vertices of odd

degree, and thus this graph has an odd number of interior vertices with odd degree.

But these correspond exactly to rainbow triangles.
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We actually need a slightly different version of Sperner’s lemma with a very similar

proof, since we’re triangulating a square:

Lemma 2.3. Let P be a polygon whose vertices are colored by three colors 1, 2, 3, and

Σ a triangulation such that vertices refining an edge between i and j receive colors i

or j. Then the number of rainbow triangles has the same parity as the number of 1-2

edges on the boundary of the polygon.

We’ll also need to use some algebra. In particular, we recall the 2-adic valuation

and corresponding 2-adic absolute value on Q: given a ∈ Q, write a = 2n(r/s)

uniquely where n ∈ Z, gcd(r, s) = 1 and r, s have no factors of 2. The 2-adic valuation

of a is v2(a) = n (and v2(0) = ∞) and the corresponding absolute value on Q is given

by

|a|2 = 2−n.

| · |2 is a non-Archimedean absolute value: |0|2 = 0, |xy|2 = |x|2|y|2, and

|x+ y|2 ≤ max{|x|2, |y|2}.

For n ∈ Z, |n|2 < 1 iff n is even; this will be the key to our proof.

There’s just one problem with this whole setup. The 2-adic absolute value only

makes sense for points in Q, so if we want to, say, apply it to the coordinates of the

vertices in a (1/N, . . . , 1/N)-dissection of the square, then a priori we’d only be able

to do so if our vertices were in Q2. However, by a bit of algebraic dark magic (i.e.

Zorn’s lemma, localization, and the theory of valuation rings: Chevalley’s theorem)

we can actually extend | · |2 to a non-Archimedean absolute value on R, i.e. (using

the same symbol) there is | · |2 : R → R such that |0|2 = 0, |xy|2 = |x|2|y|2,

|x+ y|2 ≤ max{|x|2, |y|2}

for all x, y ∈ R, and |x|2 is the 2-adic absolute value of x for x ∈ Q. In particular, it’s

still true for every n ∈ Z that

n is even ⇐⇒ |n|2 < 1.

Now, we may prove that if (1/N, . . . , 1/N) is a dissection of the unit square, then N

is even. We partition R2 = S1 ⊔ S2 ⊔ S3, where

S1 = {(x, y) : |x|2 < 1, |y|2 < 1},

S2 = {(x, y) : |x|2 ≥ 1, |x|2 ≥ |y|2},

S3 = {(x, y) : |y|2 ≥ 1, |y|2 > |x|2},

and color the points in Si by i. Moreover, observe that a+ S2 = S2 and a+ S3 = S3
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for all a ∈ S1, by the ultrametric inequality |x+ y| ≤ max{|x|, |y|}.

Proposition 2.4. Let T be a triangle with one vertex in each Si and let A denote its

area. Then |A|2 > 1.

Proof. Observe 0 ∈ S1, so by translation-invariance we may assume its S1-vertex is

(0, 0). Let (x2, y2) ∈ S2 and (x3, y3) ∈ S3 be its other vertices. Then A is given by the

determinant

A =
1

2
det

(
x2 x3

y2 y3

)
=

1

2
(x2y3 − x3y2).

By our coloring, we have |x2|2 ≥ |y2|2 and |y2|2 > |x2|2, so that |x2y3|2 > |x3y2|2.
Thus

|A|2 =
∣∣2−1

∣∣
2
|x2y3 − x3y2|2 = 2|x2y3|2 = 2|x2|2|y3|2 ≥ 2 > 1

as desired.

Now, suppose (1/N, . . . , 1/N) is a dissection of the unit square, and let T witness

this; T cuts [0, 1]2 intoN triangles of equal area. Color their vertices of each triangle in

T by i ∈ {1, 2, 3} determined by membership in Si. On the edge (0, 0)-(0, 1), |x|2 = 0

identically, so no points there get color 2. On (1, 0)-(1, 1), |x|2 = 1 identically, so no

points there get color 1. On (0, 1)-(1, 1), |y|2 = 1 identically, so no points there get

color 1. Hence any 1-2 edges lie on the (0, 0)-(1, 0) edge. Moreover, there we have

no vertices of color 3 since |y|2 = 0 identically. As (0, 0) ∈ S1 and (1, 0) ∈ S2, the

number of 1-2 edges is given by the number of alternations between 1 and 2. This

number must be odd, so there are an odd number of 1-2 edges on the boundary of

the unit square.

Thus, by Sperner’s lemma, some triangle ∆ in the dissection is rainbow, i.e. has

a vertex in each Si. Hence its area A satisfies |A|2 > 1. But [0, 1]2 has area NA = 1,

and thus we must conclude |N |2 < 1 since |N |2|A|2 = 1. Since N is an integer, this

implies that N is even and completes the proof.
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Part (b): We handle the “deduce. . . ” first, since it’s much easier. Let N odd; to

show (1/N, . . . , 1/N) is not a dissection of the square, we need to show there is no

p ∈ Z[x1, . . . , xN ] with p(1/N, . . . , 1/N) = 1/2. But indeed, there are bi ∈ Z, d ∈ N
with

p(1/N, . . . , 1/N) =
d∑

i=0

bi
N i

=

∑d
i=0 biN

d−i

Nd
,

which will never be 1/2 since N is odd.

To prove the polynomial fact, suppose (a1, . . . , am) is a dissection of the square

and let A = Z[a1, . . . , am]. If 2A = A, then there is f ∈ Z[x1, . . . , xm] with 1 =

2f(a1, . . . , am), and we’re done. We claim this is always the case. Indeed, suppose not.

Then algebraic dark magic kicks in: 2 is contained in a height-one prime ideal of A;

take its integral closure in A; it’s a discrete valuation ring R. Using a correspondence

between valuation rings and absolute values, we can construct a non-Archimedean

absolute value | · |a on the field of fractions of A, extended to R by the usual Chevalley

business, such that |ai|a ≤ 1 for all 1 ≤ i ≤ m and |2|a < 1. Running the same

argument as in part (a), using |·|a instead of |·|2, we find that |ai|a > 1, a contradiction.

For more detail, see the original paper of Monsky, 1970.

Ryder Pham
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA

E-mail : rtp26@pitt.edu

Robert Trosten
Courant Institute of Mathematical Sciences, New York University, New York, NY

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA

E-mail : robert.trosten@nyu.edu, rtrosten@alumni.cmu.edu

© 2025 Pham and Trosten. This open-access article is licensed under CC BY 4.0.

Pittsburgh Interdiscip. Math. Rev. is managed by undergraduate students from the University of Pittsburgh and

Carnegie Mellon University, and is published electronically through the University of Pittsburgh Library System.

140

https://creativecommons.org/licenses/by/4.0/
https://www.library.pitt.edu/

	What is Beach Math?
	Problems
	Calm Waves
	Rough Waters
	Tsunami
	Figures for Rough Waters and Tsunami

	Solutions
	Calm Waves
	Rough Waters
	Tsunami


