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Abstract

The field of optimal packings belongs to the realm of “intuitive geome-
try” — a term introduced by Lészl6 Fejes Téth to describe geometry problems
that are easy to state but extremely difficult to solve. Today, “difficult” often
implies the need for computer assistance, as illustrated by the proofs of the Ke-
pler conjecture and the four-color theorem. Such problems lie at the interface
of the continuous and the discrete: to solve them, one must combine analytical
(continuous) methods and computer calculations (discrete). A solid theoretical
foundation is needed to make the computations feasible in terms of time and
memory. The proofs of the Kepler conjecture and of the four-color theorem
were eventually verified by computer, which is natural given that proofs of this
magnitude are impossible to fully check by hand, and their significance made
formal confirmation essential to the community. This inseparable triplet of com-
plicated conjecture, computer assistance, and eventual formal verification will
undoubtedly appear again in future results. In this article, we explore optimal
disk and sphere packings, a domain that originated with the Kepler conjecture,

where geometry and computation interact in various surprising ways.
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1. From coins to oranges and beyond

How should we place one-euro coins (i.e., congruent disks) on a table (two-
dimensional space) without overlap to cover as much surface as possible? After a
brief reflection, the reader probably imagined one of the arrangements in Figure 1.
The left-hand arrangement covers about 78% of the plane, while the right-hand one,
called the hexagonal packing, covers more than 90%. This pattern, optimal in terms
of coin packing, has been used by bees since long before humans started to play with

coins (Figure 2).
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Figure 1: Two ways to arrange one-euro coins. Figure 2: A honeycomb.!

'Matthew T Rader, MatthewTRader.com, License CC-BY-SA

19


https://www.MatthewTRader.com

DARIA PCHELINA

Consider the analogous question in three dimensions: What is the densest way to
stack oranges? It turns out that the optimal packing is the one we see on market
stalls, as the one in Figure 3. It is constructed by superposing layers of spheres
centered on square grid, as shown in Figure 4, on the left. Viewed from the side,
we obtain the triangles of spheres from a hexagonal arrangement, depicted on the
right in Figure 4. In 1611, Kepler conjectured that this was the optimal way to pack
cannonballs [Kep11]. Remarkably, this conjecture was resolved only 400 years later by
a long computer-assisted proof [HF06]. We will come back to the Kepler conjecture
in Section 4.1.
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Figure 3: Oranges at the market.? Figure 4: Ilustrations by Kepler [Kepl1].

Those whose imagination is not confined to the physical world study optimal
sphere packings in higher dimensions. These problems have applications in infor-
mation theory, particularly in the construction of error-correcting codes. Thanks
to Viazovska’s breakthroughs, the sphere packing problem is now solved in dimen-
sions 8 and 24 [Vial7, CKM"17]. She received the Fields Medal in 2022 for these
contributions.

Another generalization of the coin arrangement problem is to use coins of two
different sizes. For example, the best way to cover a table with the two coins

@ e

is shown in the middle of Figure 5. The solution depends on the ratio between the
coin sizes. The arrangements on the left and on the right in Figure 5 are optimal for
the corresponding ratios. In Section 3 we will discuss these results and also examine
other optimal arrangements with two and three coin sizes.

Zhttps://www.reddit.com/r/oddlysatisfying/comments/b75dgf/this_display_of_
oranges/
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OPTIMAL PACKINGS OF COINS AND ORANGES

Figure 5: Optimal arrangements for each pair of coin sizes.

Let us increase both the dimension of the space and the number of sphere sizes.
For example, consider the packing of oranges and cherries shown in Figure 6: each
cherry has exactly the right size to fit into the hole formed by an octahedron of six
oranges. This packing reproduces the configuration of sodium ions (cherries) and
chloride ions (oranges) in the crystalline structure of sodium chloride — the main
component of table salt. We will return to this “salt” packing in Section 4.

& ¢ ¢ B

Figure 6: Inserting cherries in the optimal packing of oranges (left) to get the atomic
structure of the salt crystals (right).

This observation naturally points toward an application of packing problems:
chemists are interested in optimal disk and sphere arrangements because such config-
urations may help them to design compact materials using spherical nanoparticles of
prescribed sizes [PDKM15, HST12]. In fact, the self-assembly of spherical and cylin-
drical nanoparticles often corresponds to optimal disk or sphere packings [CCMFT23].
Figure 7 illustrates experimental results from [PDKM15].

Another, more down-to-earth application of optimal packings is actually packing
physical objects of realistic size — such as oranges in crates or cylindrical pipes in
shipping containers. Up to this point, we have focused on infinite packings of the
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Figure 7: Arrangements self-assembled from colloidal nanodisks and nanorods
in [PDKM15] precisely corresponding to optimal disk packings.

entire plane or of higher-dimensional spaces. In real life, objects must fit inside a
bounded region, and the optimal arrangements in containers are often quite different
from the optimal infinite packings. We begin our journey by studying finite disk
packings in circular and square containers in Section 2.

2. Disks in boxes

Our main question is the following: given n identical disks, what is the smallest
square (or circular) container in which they can be placed without overlap, and what
are the corresponding optimal arrangements? A variety of methods are used to study
this problem. Sometimes, we prefer to consider point arrangements instead of disk
packings, while at some point, we will even replace disks by billiard balls!

2.1. Points vs disks

For the sake of simplicity, let us first consider the case of a circular container. We
formally define the set of packings of n identical disks of radius r in a circle of radius
R as follows.

P,(r,R) :={(by,...,b,) such that b; C B(0, R) and int(b;) Nint(b;) =0 Vi # j},

where B(0, R) := {z € R?||z| < R} is the circular container of radius R centered in
the origin and by, ..., b, are disks of radius r with non-overlapping interiors (i.e., a
pair of disks can be tangent but can not intersect).

Let us now introduce the first two formulations of our problem.

Problem 1. Find the smallest circular container such that n unit disks fit inside,

R,:= min R.
P, (1,R)#0

Problem 2. Find the biggest r such that n disks of radius r fit into the unit circular
container,
rn:= max T.
Py, (r,1)#£0
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They are equivalent: one can go from one to the other applying a simple homothety.

Lemma 2.1 (Problem 1~Problem 2). P is an optimal packing of n unit disks, i.e.
P € P,(1,R,), if and only if applying the Rin—homothety to P, we get an optimal
1

n-disks packing in a unit circle, i.e., Rin -P e P(rp, 1), and r, = g

We leave the proof of this lemma to the reader (see Figure 8 for illustration).
We define the set of n-point arrangements with pairwise distance at least d in a
circle of radius R as follows:

An(d,R) :={p1,...,pn € R? such that p; € B(0, R) and |p; — p;| >d Vi # j}.
Now let us consider two formulations of the optimal point arrangements problem.

Problem 3. Find the smallest circular container such that n points with pairwise
distance at least 1 fit inside,

R, := min R.
An(1,R")#0
Problem 4. Find the biggest d such that n points with pairwise distance at least d
fit inside the unit circular container,

d, = max d.
An(d,1)70

Problem 3 and Problem 4 are equivalent for the same reason as before: it is enough
to apply an R)-deflation to a solution of Problem 3 to get a solution of Problem 4.
Moreover, they both are also equivalent to the disk packing problems:

Figure 8: Illustration of the equivalence between Problems 1-4 for n = 10.

Lemma 2.2 (Problem 1~Problem 4). If P = {b;}?_, € P,(1, R,,) where b; = B(c;, 1)

Rnlfl homothety to the centers of disks in P, we get an optimal
2

n-points arrangement in a unit circle, i.e., {775, € A(dy, 1) and d, = 5=

then applying the
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We leave the proof of this lemma to the reader — once again, Figure 8 illustrates the
transition.

In what follows, we will switch between the aforementioned formulations depend-
ing on the context. To go from one to another, it is enough to keep in mind the
following relations between the optimal values:

1 2
"R T RT
where 7, is the radius of disks in an optimal disk packing in the unit circle, R, is the
smallest radius of a circle containing n unit disks, and d,, is the maximal value of the
minimal pairwise distance of n points in a unit circle.
In the same way, one can obtain the analogous relations for square containers (see

Figure 9):
1 2
Tn = 5, d,

S TS, -2
where r, is the radius of the disks in an optimal packing inside the unit square, S,

()

is the smallest side length of a square that can contain n unit disks, and d,, is the
maximal value of the minimal pairwise distance among n points in the unit square.

Sn —2

.

—~+ |~ §

Figure 9: Illustration of the equivalence between different formulations for square
containers for n = 10.

2.2. Mathematical programming

Let us briefly recall some basic notions from mathematical programming. In
general, a mathematical programming problem is an optimization problem, where we
aim to find the best (min or max) value of a certain quantity, called the objective
value, subject to a set of constraints. A feasible solution is any choice of variables
that satisfies all the constraints, and the optimal solution is a feasible solution that
maximizes or minimizes the objective value, depending on the problem.
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Our packing problems are indeed optimization problems. The most direct way to
formulate them in terms of mathematical programming is to use the point-arrangement
version, where we try to maximize the minimal pairwise distance among the points
placed in a unit circle or square.

Let us introduce variables representing the coordinates of the points, together
with an additional variable ¢ representing the squared minimal pairwise distance, to
get rid of the square root. Instead of using a min function, we impose a constraint for
each pair of points, ensuring that ¢ is no greater than the squared distance between
the points. The optimal value d,, is then equal to the square root of the maximal
objective value of this problem.

Maximize t

n(n—1 .
st t < (z— ;)% + (v — y;)? % non-convex constraints
square container: 0 < z; <1, 0<y; <1 2n linear constraints
circular container: 0 < xf—kyf <1 n convex constraints

This is a quadratic, non-convex, inequality-constrained optimization problem.
This kind of problem is too hard for analytical approach and even with computer
assistance, using global optimization solvers, it is impossible to get solutions starting
from n = 6 [SMC707]. In other words, we should never forget about geometry!

Before trying to find optimal solutions of this problem let us first find bounds on
the objective value.

2.3. Lower bound on d,

A lower bound on the optimal objective value is given by the objective value of
any feasible solution. Our goal is therefore to construct a feasible solution that is
good enough to provide a meaningful lower bound. We begin by showing how to
place at least % points at pairwise distance at least 1 inside a square of side length
s, for any s € R*.

We divide the square into horizontal bands of height \/75, starting from the bottom
of the square (the topmost band may be narrower). These bands are delimited by
the red segments in Figure 10. Let

N = V_J 1
V3
denote the number of red segments. Place |s] + 1 points on each odd segment, so
that the first point is stuck to the left side of the square and each pair of neighbor
points is at distance 1. Now place [s — %J + 1 points on each even segment, so that
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—
1

Figure 10: Placing at least % points at distance at least 1 in a square of side s.

the first point is at offset % from the left side of the square, and each pair of neighbors
is still at distance 1. This way, the minimal pairwise distance of all points in the
square equals 1.

The total number of points equals

%<L3J+1+L3—%J+1>, if N is even,
NA(Ls) 41+ [s— 3] +1) +[s] +1, if Nis odd.

In both cases, the total number of points is at least equal to

Scaling by d = %, we obtain an arrangement of at least d?%/g points at distance at

least d in the unit square, for all d € R*.

Finally, for any n € IN, taking d = ﬁg, we can place at least n points at

distance at least , /n%/ﬁ in the unit square.

Thus, we obtain the lower bound of the objective value:
by > |2
nv3

To obtain an upper bound on the maximal pairwise distance, it is more convenient

2.4. Upper bound on r,

to return to the disk-packing point of view. The upper bound on d,, will be derived
from an upper bound on the maximal disk radius r,. To get this upper bound, we
first cut packings into small pieces.

26



OPTIMAL PACKINGS OF COINS AND ORANGES

Given a set of points S C R?, the Voronoi cell Vor(p) of a point p € S is defined
as the set points of the plane which are closer to p than to any other point from S.
More formally,

Vor(p) == {q € R* | [p—q| <|p' —al VD' € S\ {p}}.

A Voronoi cell is a convex, possibly unbounded, polygonal domain. The Voronoi
diagram of S is the union of the Voronoi cells of its points.

Figure 11: Voronoi diagram of a disk packing.

The Voronoi diagram of a disk packing is defined as the Voronoi diagram of the
disk centers, as illustrated in Figure 11.

What is the Voronoi cell of the smallest area in a packing of unit disks?® First,
we can restrict ourselves to circumscribed polygons: indeed, if one of the sides of the
cell is not tangent to the disk, moving it closer to the disk only diminishes the area,
as shown on the left of Figure 12.

S
N /7

Figure 12: Illustration of minimizing the area of a Voronoi cell around a disk.

3 Answered by Rogers who also obtained an upper bound in n-dimensional case [Rog58].
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Our aim now is to find the circumscribed polygon of minimal area. The area of a
k-gon circumscribed around a unit disk can be written as

k
; tan (%) ,

where a; are the angles between consecutives prependiculars drawn from the disk
center to the sides of the polygon (see the illustration on the left in Figure 12). Since
tan (5) is a convex function and the angles a; sum to 27 , we have

2
i Q; S oy T
2: i i=1 % )
E o~ tan; Z tan (T) = tan E

Therefore, the circumscribed polygon of minimal area must be regular. The regular
hexagon is optimal among all regular circumscribed polygons with at most six sides.
A Voronoi cell with seven or more edges must have some of its sides at a noticeably
larger distance from the center, since at most six unit disks can touch a given unit
disk; this forces its area to be significantly larger than that of the regular hexagon.*
It follows that the Voronoi cell of the area in a packing of unit disks is a circumscribed

regular hexagon.

Let us now consider a feasible solution of Problem 3, i.e., a packing of n disks of
radius r in a unit square, as depicted in Figure 13. As shown above, the area of any
Voronoi cell is at least the area of a regular hexagon circumscribed around a disk of
radius 7, which equals 2v/3r2.

" - best known candidates
\ « proved optimal
- /2
e \ lower bound —=
21 _\ —upper bound —%_

ol

D

2 30 36 80

Figure 13: Voronoi diagram of =~ Figure 14: Lower and upper bounds on d,. Points
a disk packing in a square. correspond to the best known arrangements; green
points are those proved optimal.

4You will find a complete formal proof of this fact in [MSS22].
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Since Voronoi cells are disjoint and their union is the unit square, we obtain
n
n-2v3r? < Z area(Vor(¢;)) = 1.
i=1

This implies an upper bound on the disk radius r in any feasible packing, and, there-
fore, on maximal disk radius r,. Using (J), we also obtain the upper bound on
dy:
1 2 2

— < -
2v/3n =2 2v/3n — 2
Together, these bounds describe the behaviour of the optimal distance, shown in
Figure 14.

TnS - dn:

2.5. What is a solution?

When studying packing problems, it is important to clarify what we mean by a
“solution”. At the most basic level, one may obtain a numerical candidate packing,
produced for instance by hand at the blackboard, or by running a computer simulation
based on some heuristic. Without taking precautions, such a candidate may not even
be feasible (i.e., it may fail to form a valid packing) due to rounding errors, and its
objective value is generally unreliable.

If we verify that the numerical candidate from before does indeed satisfy all con-
straints, we obtain a feasible arrangement that may or may not be optimal; we call
this a candidate packing.

Beyond this, one may aim for an enclosure of the optimum, that is, a rigorously
certified interval of packings guaranteed to contain the optimal ones. Ultimately,
the goal is to obtain the set of optimal packings, feasible configurations that are
mathematically proved to be globally optimal.

In what follows, the early stages cannot be skipped: each level is essential for
reaching the next. We therefore begin by searching for numerical candidates, approx-
imate packings that seem “good enough” and can serve as starting points for further
refinement.

2.6. Billiards in a box

Several simulation approaches were developed to find good candidate configura-
tions, and the best results are in fact obtained by combining multiple methods. Here
we give just a few examples.

The billiard simulation method, introduced in 1990 [LS90], produced many “new”
candidates at the time. One starts with n identical disks of a small initial radius and
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random initial velocity vectors in a container. All disks then inflate simultaneously
while undergoing elastic collisions; inflation stops once motion is no longer possible.
This idea has remained at the core of the most effective techniques for producing
candidate packings until today.

In the modified billiard simulation [SMCT07] (also known as the pulsating disk
shaking algorithm), disks have no initial velocity prior to their first collision. Only
local interactions (circle-circle or circle-wall contacts) are stored, which significally
improves the speed of computations.

In the point-based method, we consider arrangements of points subject to repulsive
forces. This approach was introduced in [BDGLO0] yielding new arrangements in
square containers up to n = 200. The algorithm proceeds as follows:

Initialize n random points in the unit square; set ¢ = 1.

[
W~

For each point, shift it by € in one of four directions (left, up, right, down) in
order to increase its distance to its nearest neighbor; do not move it otherwise.
Repeat until no point is shifted.

Reduce the step size: € < 236
e Stop once ¢ is sufficiently small.

This algorithm must be run many times from different initial configurations to pro-
duce good results.

To verify the feasibility of the numerical candidate obtained at the end of the
simulation, one should use interval analysis. In interval arithmetic, numerical values
(e.x., point coordinates) are replaced by intervals, and each arithmetic operation is
performed so as to produce an interval guaranteed to contain all possible results.
An inequality between two intervals is considered to hold only if the corresponding
inequality is satisfied for every pair of values taken from the two intervals. Interval
arithmetic is implemented for programming languages such as C, C++, SageMath,
and Julia through dedicated numerical libraries, and is widely used in computational
geometry to obtain certified results.’

Interval arithmetic allows us to replace each point of the arrangement by a small
error-square and to check the constraints on all possible choices of points inside these
squares at once. If interval analysis confirms that the error-squares entirely satisfy the
constraints, then we obtain an enclosure of feasible arrangements. If some constraint
is not verified, each square is subdivided into four smaller squares, and the test is

5To better understand why floating-point arithmetic fails when it comes to geometry, please
see [KMPT08].
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repeated on all combinations of smaller squares. This subdivision process can be
continued as necessary.

2.7. Proving optimality by hand

For a small number of disks, optimal packings can be found (and their optimality
proved) entirely by hand. In fact, for all optimal packings in a circular container, the
existing proofs were obtained without the use of computers. Let us consider the cases
up to n = 7. The optimal point arrangements are depicted in Figure 15.

OOOOOO)

Figure 15: Optimal point arrangements in a circular container forn = 2,...,7 [Spe25].

Lemma 2.3. Let py,...,p, be n points lying in the unit disk. Then some pair of

max(l, 2sin (%)) .

points s at distance at most

Proof. First, if some point p lies in the convex hull of a pair of points {p;, px} (Fig-
ure 16, on the left), then its distance to one of them is at most 1, and the lemma
follows.

If p lies in the convex hull of more than two points, then it belongs to the triangle
formed by some three of these points. In that case, p is at distance at most 1 from
one of them (see Figure 16, middle).

Otherwise, every point p of the arrangement is outside the convex hull of the
remaining points. Therefore, p can be moved radially outward until it lies on the
boundary of the unit disk, without decreasing any of its distances to the other points,
as shown on the right of Figure 16. Thus, we may assume that all points pq,...,p,
lie on the boundary of the unit disk.

The points divide the circumference into n arcs. The total circumference is 27,
therefore, at least one arc has length at most %’r The chord subtended by such an
arc has length at most 2sin (;—r), which yields the desired upper bound. O
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Figure 16: Hlustration of the proof of Lemma 2.3.

For 1 < n < 6 points, one has sin (%) > %,

that d,, < 2sin (%) The arrangements where all points lie on the boundary are thus

and therefore, Lemma 2.3 implies

optimal with d,, = 2sin (%)
For n = 7, the optimal configuration consists of six points on the boundary and
one point at the center, d; = dg = 1.

The analogous proofs for higher number of points are significantly more compli-
cated. As of today, such proofs were given for n from 2 to 10 [Pir69], 11 [Mel94],
12 [Fod00], 13 [Fod03], and 19 [Fod99]. Figure 17 represents these optimal packings.
Pink disks, called rattlers, are free to move, yielding a continuum of optimal packings.

2.8. Proving optimality by computer

For the square container, starting from n = 10 (with a few exceptions), the opti-
mality proofs rely on computer assistance. In this section, we use the case n = 10,
proved in [PWMdG92], as an example. We will first sketch how to obtain a certi-
fied enclosure of the optimal point arrangements using the so-called cell elimination
method, and then describe how the uniqueness of the optimal value inside this enclo-
sure is proved via shrinking error regions.

We begin with a good lower bound d on d,, (for instance, for n = 10, one may
take d = 0.42). This bound is provided by a feasible candidate packing obtained in
the previous step (Section 2.6). Using this value, we decompose the unit square into
tiles of diameter at most d, which guarantees that each tile can contain at most one
point. In our example we use 16 tiles of size }L X %.

We then choose a combination of n active tiles, i.e., tiles that are candidates for
containing a point, among the tiles of the decomposition (for n = 10 with 16 tiles this
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yields Gg) possible choices). Figure 18 (left) shows one example of such a combination
of active tiles (in white).

Each tile is then partitioned into a grid of small cells (for instance, an 8 x 8
square grid). A cell is declared active if it may contain a point under the current
combination. The elimination step proceeds as follows: if a point were located in a
given cell (ig, jo) (red in Figure 18) of some tile ¢y then every cell (7, 5) in a neighbor
tile which violates

(It —dol +1)*+ (| = jol +1)* = (8d)”

cannot contain a point. Indeed, the above inequality means that every point of (i, jo)
is at distance at most d from every point in (i, j).

Thus, each cell of ty induces an exclusion region in adjacent tiles. By intersecting
all such exclusion regions we get the set of cells incompatible with the presence of a
point in ¢, which can thus be eliminated altogether (you can see this eliminated set
in Figure 18, for the bottom left active tile). If, after performing these eliminations
tile by tile, active cells still remain in each tile, the grid is refined by subdividing each
active cell into four smaller ones, and the elimination procedure is repeated.

If this iterative process eliminates all active cells in some tile for a given tile
combination, this combination cannot correspond to an optimal packing. Otherwise,
we obtain a validated enclosure of the true optimum, as in Figure 18, on the right.

For n = 31-33, certified enclosures are the best results available so far [Mar21].
For smaller values of n, however, the precise structure of the optimal arrangement
(or the set of optimal arrangements, as in cases with rattlers) is known for all n up
to 30 and for n = 36.

A i

Figure 18: Illustration of active cell elimination process for n = 10.

We switch from points arrangements to disk packings for this part. The proof of
uniqueness follows a procedure structurally similar to the elimination method above,
but instead of working with square cells we use convex regions bounded by straight
lines and circular arcs. We begin by “guessing” the tangency graph of the optimal
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packing. From these tangencies we obtain approximate center positions, and around
each guessed center we place an initial error region: a disk of small error-radius e
(white in Figure 19, on the left). These regions represent the admissible locations of
the centers in the optimal packing.

The elimination step now proceeds by cutting these error regions with straight
lines. Given two neighboring circles C; and C}, the region R; can be used to remove
from R; all points that cannot satisfy the tangency constraint with any point of R;.
The endpoints of each cutting line are determined by examining all critical points on
the boundary of R;. After performing all such cuts among all neighboring pairs, each
region becomes a convex polygon strictly contained inside its original error disk (see
Figure 19, in the middle).

At this stage, all regions have shrunk by a common contraction factor ¢ < 1, so
the radii of the error disks can be updated from € to ge. It turns out that, after scaling
all regions by this factor, the same sequence of cuts can be applied again. Iterating
this process produces a nested sequence of concentric shrinking error-disks, and these
converge to the unique packing compatible with the guessed tangency pattern. In
this way, the optimal packing is shown to be unique.

11 12

i

Lo
Bk

Figure 19: Example of shrinking error regions during the uniqueness proof for n = 13
from [PWMdG92].

2.8.1 Optimal disk packings in squares

Figure 20 illustrates packings of n unit disks in a square proved to be optimal
for n = 4,...,30 and 36. For n = 1-9, the proof was obtained by hand [SM65,
Sch70], as well as for n = 14, 16, 25, 36 [KW87, Wen83, Wen87h, Wen87a]. Computer-
assisted methods seen above were used for n = 10-20 [dGPW90, PWMdG92], for
n = 21-27 [NO99], and for n = 28-30 [Mar(07]. Notice that for n = 28 and 29,
even though the exact combinatorial structures (tangencies) of the globally optimal
packings are known, the exact solution of the algebraic systems of equations needed to
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obtain symbolic expressions for the coordinates (and the optimal value of the objective
function) has not yet been found. Consequently, these packings are described by their
structure together with very tight enclosures of the centers.
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Figure 20: Optimal packings of n disks in a square for n = 4-30 and 36 [Spe25].

Figure 21 depicts the cases n = 31-33 with certified enclosures for the optima.
The width of each enclosure is at most 107!, so the disk centers are shown as points:
the enclosure is invisible to the eye, although some of the indicated tangencies may
not occur in the true optimum (the structure of the packing is not fully determined).
These results are due to [Mar21].

2000

Figure 21: Certified enclosures of optimal packings for n = 31-33 [Spe25].

3. Triangulations and scissors

Let us turn to infinite packings. This setting is different from container problems,
in particular, the mathematical program would involve infinitely many variables and
there is no bounded domain. Nevertheless, we will see that some methods are common
for both.

Let S be a set of disks. A plane packing of disks from S is a configuration of
copies of disks from S on the plane such that the disks do not overlap. To measure
the proportion of the plane covered by an arrangement, we introduce the notion of
density. Let P be a packing and let X be a compact subset of the plane. The density
of P inside X, denoted §|x(P), is formally defined as

area(X N P)

Ox(P) = area(X)
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The density of the packing P, denoted §(P), is the proportion of the plane covered
by the disks of the arrangement.
d(P) :=limsup J|p,(P),

n—oo
where B,, denotes the disk of radius n centered at the origin.
Our main problem is the following: given a set of disks S, find the maximal
density of an arrangement of the plane with these disks. We denote this value by dg
and formally define it as follows:

dg = sup I(P).

P is a packing by S

Any packing that reaches the maximal density is called optimal.

3.1. One-disk packings

Let us return to the subject with which we began: packings of identical disks
(or one-disk packings). For simplicity, we consider arrangements of unit disks.® As
mentioned in the Section 1, the hexagonal packing, represented in Figure 22a, is
optimal. This was formally proved in 1942 by Fejes Téth [FT42]. The density of the
hexagonal packing is equal to

T
Bhex i= —— A 0.9069 ~ 91%.
h 213 ’

We will now see how to prove this result. Our goal is to demonstrate that no
packing of unit disks is denser than the hexagonal one. A disk arrangement on
the plane is an infinite object, so we have to analyze an infinite number of infinite

objects. .. To make our problem a bit less “infinite”, we cut each packing into small
23"
This will conclude the proof: indeed, once the density of each individual piece is

pieces and show that none of these pieces is denser than dye, =

bounded, the density of every finite portion of the packing is bounded by the same
value, and by definition this bounds the density of the entire packing. Therefore, no
packing of unit disks in the plane can be denser than the hexagonal packing.

A packing P of disks from S is called saturated if it is impossible to place more
copies of disks from S on the plane without intersecting the disks in P. From now
on, we only consider saturated packings: indeed, inserting disks in a packing does not
decrease the density, so an upper bound on the density of saturated arrangements
is an upper bound for all arrangements. Figure 22 represents saturated packings;
examples of non-saturated 2-disk arrangements are given in Figures 26a and 26c¢.

5The density of an arrangement does not change if a homothety is applied.
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There are two natural ways to cut a packing into pieces, leading to two distinct
proofs: one based on polygons and another based on triangles.

The first approach is to use the Voronoi diagram to partition the packing, as we
already did for packings in containers in Section 2. To obtain an upper bound on the
maximal pairwise distance, we rely on the fact that the smallest Voronoi cell of a unit
disk is the circumscribed regular hexagon, whose area equals 2v/3 [Rogh8]. Hence,
the density inside any Voronoi cell of a unit disk in a packing is at most ﬁg: which
completes the proof.

The second method, used in [Thul0] and [FT53], is to decompose the arrangement
into triangles whose vertices are the centers of the disks. Let us draw the dual graph
of the Voronoi diagram: its vertices correspond to the disk centers, and two centers
are connected by an edge if and only if their Voronoi cells share a boundary. This
graph, shown in black in Figure 22, is called the Delaunay triangulation [Del34] of
the packing.”

VaaVaaVad
RO 4> &

(a) Hexagonal arrangement. ) Another saturated arrangement.

Figure 22: Voronoi Diagrams and Delaunay triangulations.

It turns out that, by fundamental properties of Delaunay triangulations of satu-
rated arrangements, the area of any Delaunay triangle is at least v/3.8 The intersection
of such a triangle with the disks of the packing consists of three circular sectors whose
angles sum to 7. Hence, the total intersection area is always 7. Then the density of
each Delaunay triangle is at most ”—/g, which completes our second proof.

3.2. 2-disk packings

Now that we know the optimal packing of identical disks, in addition to the unit
disks (O), let us also use copies of a second, smaller, disk of radius r (@). The
maximal density of two-disk packings with the unit disk and the small r-disk is
denoted 6, .

"More precisely, one can always obtain a triangulation from the dual graph. For an algorithmic
perspective on Delaunay triangulations, see [GO04].
8 A simple proof of this fact can be found in [CW10].

37



DARIA PCHELINA

For certain values of r, the optimal packings are known: for instance, the 9 ar-
rangements depicted in Figure 27. For other values, the maximal density 9, is still
unknown, so we at least try to find bounds for it. For example, by using only one of
the disks, we can always achieve the density of the hexagonal arrangement pe, = ﬁg?
this gives us a lower bound for the maximal density regardless of the radius of the
small disk. This bound is traced in green in Figure 25.

The use of the second disk potentially allows for a density greater than dy... For
example, if the small disk fits into the gap between three pairwise tangent large disks,
placing a small disk in each gap of the hexagonal arrangement strictly increases the
density?. On the other hand, if the radius of the small disk approaches 1, the use of
the second disk does not increase the maximal density.

The definition of the Delaunay triangulation extends quite naturally to arrange-
ments with multiple disk sizes. This generalization, introduced in [FTM58], is called
the FM-triangulation. The only novelty in this setting is that a Voronoi cell is de-
fined as the set of points closer to a given disk than to any other disk in the packing;
thus, an edge separating two disks of different radii is a hyperbolic arc rather than a
straight line!”.

Florian used this triangulation to obtain an upper bound on the maximal density
of a two-disk packing [Flo60]. He showed that, regardless of the arrangement, no
triangle of its triangulation is denser than the triangle formed by two small disks and
one large disk, all mutually tangent. Figure 25 (in blue) traces the Florian bound on
the maximal density as a function of the value of r.

Nine years later, Blind obtained another bound using a different cutting rule: he
considered power diagrams rather than Voronoi partitions or FM-triangulations [Bli69].
The power II of a point X with respect to a disk D is the square of the distance from
X to D, more formally, it is defined as

Ip(X):=|0X|* - R?,

where O is the center and R the radius of the disc. Given a packing P, its power
diagram is a partition of the plane into power cells associated to the discs; each cell
consists of the points whose power distance to a given disk is smaller than to any
other disk in P. The cells of the power diagram are all convex and polygonal.

Note that the power diagram of a packing of identical disks coincides with its
Voronoi partition. Figures 23, 24 depict respectively the Voronoi partition and the

9Moreover, if the size of the small disk tends to zero, we can pack the small disks in a hexagonal
manner inside the gaps and obtain the density dnex + (1 — Shex)Ohex =~ 99%.

0For more details, the reader may consult Chapter VI of Fejes Téth’s book [FT64]. Readers who
read German may also refer to the original paper [FTM58].

38



OPTIMAL PACKINGS OF COINS AND ORANGES

power diagram of a disc packing.

Figure 23: The Voronoi partition. Figure 24: The power diagram.

Blind bounded the maximal density of an arrangement by the density of the
union of a regular heptagon circumscribed around a unit disk and a regular pentagon
circumscribed around a disk of radius 7. The Blind bound is traced in red in Figure 25;
note that this bound provides a threshold g ~ 0.74 (e) such that for any r greater
than ¢p, the densest arrangement is the hexagonal arrangement using only a single
disk size.

3.3. Triangulated packings

Finding optimal packings for each pairs of disk sizes is difficult. Let us start from
the other end: which packings seem very dense? We have shown that for identical
disks, the hexagonal packing is optimal. Its triangulation is composed of identical
triangles formed by three mutually tangent disks (Figure 22a). Let us generalize this
property.

First, we define the contact graph of a packing as a graph whose vertices are the
centers of the disks and each edge corresponds to a pair of tangent disks (Figures 26¢—
26d depict four examples of arrangements with their contact graphs). A packing
is called triangulated if its contact graph is a triangulation, i.e., all its faces are
triangular; Figures 26¢, 26d show two examples of triangulated arrangements. An
informal definition is that each of the “gaps” of a triangulated packing is delimited
by three mutually tangent disks. As illustrated by Figure 26, the properties of being
triangulated or saturated are orthogonal.

In [FT84], Fejes Téth calls triangulated arrangements “compact”: they do not
have large gaps, so they intuitively seem to be the most compact. Furthermore,

39



DARIA PCHELINA
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Figure 25: The bounds of Florian (in blue) and Blind (in red) as well as the density
of the hexagonal arrangement (in green). The radius ¢z (e) is the threshold value of
r above which the hexagonal arrangement is optimal: i.e., the use of the second disk
does not increase the maximal density.
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Figure 26: Examples of packings.

around each disk, its neighbors form a “crown” of tangent disks that appear to be
a locally optimal configuration. For these reasons, saturated triangulated packings
seem to be the best candidates for maximizing density.

We call a value of r triangulated if it allows for triangulated packings using both
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unit disks and disks of radius r. Not all values of r are triangulated: to understand
this, we invite the reader to try to arrange coins of two sizes on a table in a perfectly
triangulated manner!!

In 2006, Kennedy demonstrated that there are only 9 values of r allowing trian-
gulated packings in which both disk sizes are present. We denote these values by
r1,...,Tq; their corresponding triangulated packings are shown in Figure 27. Each of
these packings is periodic, meaning that there exist two non-collinear vectors, called
periods, such that translating the packing by either vector leaves it unchanged. In
this work, we always consider packings of the entire plane, and since the triangulated
packings depicted here and below are all periodic, it is sufficient to represent their
fundamental domain (a parallelogram spanned by the period vectors, marked in black
in Figure 27) to see how the entire plane is packed.

AN V
N = N = Y Y
2\ 2\ < =
N Y
ol :

r~0.63 §*~91.1% r~0.54 6*~91.1% r~0.53 §*~91.4% r~0.41 §*~92% r~0. 38 6" ~92% £~0. 34 (5 N92 5% r~0.28 §* ~93 2% ~0.15 ¢&* ~95% ~0.1 ~96%

Figure 27: Periodic triangulated binary packings corresponding to cases by, ..., bg.

A pair of disks with radii 1,r;, ¢ € {1,...,9} is called a binary case. The binary
cases are designated by by,...,bg. It turns out that for each of the nine binary
cases, the density is maximized by a triangulated binary disk packing — one of
those shown in Figure 27'2. Heppes in [Hep00] showed that the triangulated disk
packing of by (represented in Figure 27), where 7, = v/2 — 1, maximizes the density
among all two-disk packings with disks of radii 1 and r4. Three years later, Heppes
generalized his method to cover five other cases: by, bs, bg, by and by [Hep03]. Despite
his efforts, that proof is difficult to understand due to the complex case analysis
carried out by hand; this is why subsequent results in the area are computer-assisted.
Indeed, separating the proof into a sequence of clear, human-readable ideas from the
computer code handling the case enumeration allows both better understanding and
greater reliability. The next step was made by Kennedy, who introduced the method
of localizing potentials, inspired by the potentials of classical statistical mechanics.
This new approach allowed him to treat by [Ken05]. Finally, the fully computer-
assisted method required to solve the two remaining triangulated cases, b5 and by,
was provided by Bedaride and Fernique [BF22].

HTn reality, using two-euro and one-cent coins, one can approximate a triangulated arrange-
ment. .. The motivated reader is invited to find it.

12These packings are not the only triangulated packings corresponding to the triangulated radii
r;. There is an infinite number of triangulated packings for certain radii, as described in [Ken06].
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By modifying the method used in the previous result, Fernique obtained new
bounds on the density, which provide an almost complete description of the behavior
of the maximal density as a function of the size of the small disk r [Fer22]. These
bounds are shown in Figure 28.
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Figure 28: The Fernique bounds.

3.4. 3-disk packings

Using more disk sizes potentially allows for denser packings, but it also increases
the combinatorial complexity of the problem which complicates the study. We saw
earlier that the hexagonal packing, the only triangulated packing of identical disks,
is optimal. We also learned that whenever a pair of disk sizes admits a triangulated
packing, a triangulated packing is in fact optimal. These results naturally suggest
the following conjecture.

Conjecture 3.1 (Connelly, 2018 [CGSY18]). If a finite set of disks allows a saturated
triangulated packing, then the density of a packing using these disks is mazimized by
a triangulated packing.

As the statement above is true for one-disk packings and two-disk packings, the
next step is to verify it for three-disk packings (or ternary packings). First, we must
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find the disk sizes allowing triangulated ternary packings. This problem was solved
in 2021: there are 164 pairs (r, s) allowing triangulated packings with disks of radii
L,r s, 1>r>s[FHS21].

Here and later, a triplet of disks with the radii associated with each of these pairs
is called a triangulated triplet. Triangulated triplets are indexed by positive integers
from 1 to 164, as in [FHS21].

Figure 29: The triangulation of a triangulated  Figure 30: Illustration of den-
packing and two of its triangles. sity redistribution.

Unlike one-disk packings, a simple triangulated partition is not sufficient to demon-
strate the optimality of a multi-disk packing. This is due to the fact that a packing
with multiple disk sizes feature several types of triangles (Figure 29), some of which
are denser than the density of the triangulated packing. To obtain the proof of opti-
mality, we use a method which was called “cell balancing” in [Hep03]; it consists in
redistributing the density among the triangles. Indeed, even if certain triangles are
particularly dense, some of their neighbors are very “empty,” as illustrated in Fig-
ure 30. The method has two steps: first, we locally redistribute the density among
selected cells while preserving the global density. Then we prove that, after redistri-
bution, the density of every triangle in the packing remains below the target density.

Computer assistance is required for several parts of the proof: an extensive case
analysis and symbolic computations are needed to construct the redistributed density
function, and interval analysis combined with recursive subdivision (as introduced in
the context of packings in containers in Section 2.8) is then used to verify the density
bound over the entire space of possible triangles.

This method yields a proof of optimality for the 16 packings shown in Fig-
ure 31 [FP23]. It also established the optimality of the two-disk triangulated packings
depicted in Figure 27 for 16 triplets from Figure 32. These are the cases were intro-
ducing the third disk size (blue disk) does not increase the maximal density.

The bad news is that the conjecture is false: there are at least 45 counterexamples.
When the ratio between two of the three disks is close to that of an optimal binary
packing, it is possible to arrange the three disks in a similar (non-triangulated) way
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Figure 32: The ternary cases where the optimal packings use only two out of three
disks. For cases 1 to 5, this is the triangulated packing of bg (Figure 27); for case 6
— by; for cases 7 to 9 — by; for cases 10 to 15 — by; for case 19 — bg.

and still obtain a high density. The density of triangulated binary packings (rep-
resented by Figure 27) exceeds the density of the majority of triangulated ternary
packings, which suggests using them to find counterexamples (that is, disk triplets
having a non-triangulated packing that is denser than any triangulated packing).

The pairs of disks allowing binary triangulated packings are designated by b1, .. ., by,
while the triplets with ternary triangulated packings are indexed by positive integers
from 1 to 164. Let us illustrate this method with an example. Take case 73; its
triangulated ternary packing is shown in Figure 33, on the right. Notice that the
radius of the smallest disk (s73 &~ 0.264) in case 73 is close to the radius of the small
disk (rp, ~ 0.281) in case by.

We deform the binary triangulated packing b7 (Figure 33, on the left), by replacing
the small disk of b; with the smallest disk of case 73. These deformations are inspired
by the flip-and-flow method introduced in [CG21]'. We choose a deformation that
breaks the fewest contacts between the disks, it is given in the center of Figure 33.
Notice that the only broken contact is between the pair of red disks: they are no longer

13Flip is for flipping an edge in the contact graph of the packing, flow — for the continuous
deformation which follows.
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8, ~0.931901 7, ~ 0280776 §’75 > 0.924545 575~ 0.263654 673 < 0.920565 s73 ~ 0.263654

Figure 33: On the left: a binary triangulated packing of case b;. In the middle: its
deformation where the small disks are replaced by the smallest disks of case 73. On
the right: a periodic triangulated packing of case 73, its fundamental domain and its
description are given in [FHS21].

tangent. The density of the deformed packing is slightly higher than the density of
the triangulated ternary packing, making it a counterexample.

4. Salt, tetrahedra and computer

4.1. One-sphere packings

The packing of “cannonballs” described by Kepler in his manuscript [Kepll] is
known today as the face-centered cubic packing (or FCC). It is a regular packing: the
centers of the spheres are arranged at the vertices of the FCC lattice, which gave the
packing its name. Figure 34, on the left, depicts the local configuration of the FCC
packing. An equally dense compact packing generated by another regular lattice, the
hexagonal close-packing (or HCP), was first mentioned by Barlow in 1883 [Bar83]
(Figure 34, on the right). There is actually an infinite family of globally distinct
compact packings, all having the same density

T
— ~0.7404 ~ 74%,
3v2 ’

they are called the close-packings. Every close-packing is constructed by stacking
layers of spheres whose centers form the hexagonal lattice on the plane; each new
layer can be placed in two different ways relative to the two previous layers (see
Figure 35), so we obtain an uncountable number of packings in the end. There are,
however, only two local configurations around a sphere, represented by Figure 34,
that appear in close-packings; their Voronoi cells are both of density ﬁi

Gauss in 1831 [Gau3l] established a link between lattices and quadratic forms

45



DARIA PCHELINA

Figure 34: FCC (left) and HCP (right) local configurations of spheres and their
contact graphs.

Figure 35: Layer-by-layer construction of compact packings of congruent spheres.

which implied that compact packings maximize the density among lattice packings'?.
The general result turned out to be much more difficult. The conjecture remained
open for 400 years, and was even included in Hilbert’s list of problems as part of the
18" problem [Hil02]. In the following years, researchers used various approaches to
obtain increasingly tighter upper bounds on the maximal density of sphere packings.
Blichfeldt obtained the first upper bounds (0.884 and 0.835) in 1919 and 1929 [BIi19,
Bli29]. In 1958, Rogers bounded the density of a packing by the density inside the
tetrahedron formed by four pairwise tangent spheres (we call such tetrahedra tight
tetrahedra), equal to ~ 0.7796, [Rog58]. The best upper bound before the resolution
of the Kepler conjecture was given by Muder [Mud93] and is =~ 0.773055.

The Kepler conjecture is a continuous optimization problem (we are trying to
maximize the density function over the set of all packings) with an infinite number
of variables (there are an infinite number of spheres to pack). Lészlé Fejes Téth

14j e. those where sphere centers form a lattice
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took a great step towards the proof of the Kepler conjecture by proposing to use
the local density approach [F'T53]. This approach makes it possible to reduce this
infinite-dimensional optimization problem to one having a finite number of variables.
Furthermore, he was the first to suggest the use of a computer; in his book on regular
figures [F'T64], he writes:

Given the complexity of this function, we are far from attempting to
determine the exact minimum. But, aware of the rapid development of
our computers, it is imaginable that the minimum could be approximated
with great accuracy.

The initial approach by Hales to the Kepler conjecture [Hal92, Hal93] was based
on the Delaunay partition of space but did not lead to a complete proof. He there-
fore adopted a hybrid partition involving Delaunay simplices together with modified
Voronoi cells. In collaboration with Ferguson, Hales completed the first full version
of the proof in 1998. The global idea of the proof is similar in spirit to the density
redistribution method we saw for disk packings, but in three dimensions everything
becomes far more complicated; extensive computer assistance is required for several
parts of the argument. The proof consisted of six preprints and tens of thousands of
lines of computer code. It took several years of intensive reviewing before the team
of 12 referees declared themselves “99% sure” of its correctness, and a fully revised
complete version was finally published in 2006 [HF06]. In the meantime, an abridged
version of the proof had appeared in the Annals of Mathematics [Hal05].

In 2003, Hales launched a global collaborative project to obtain a formal proof of
the Kepler conjecture. The project was named Flyspeck, which is an expansion of
“FPK”, for “the Formal Proof of the Kepler conjecture”. The goal of the project was
to construct a complete formal proof verifiable by proof assistants such as HOL Light
and Isabelle. Flyspeck was completed in 2014; three years later, after meticulous
review by the mathematical community, the formal proof was accepted by the Forum
of Mathematics [HABT17].

You will find detailed insights on the history of the Kepler conjecture and its proof
up to 2003 in Szpiro’s popular book [Szp03].

4.2. Two-sphere packings

In 2D, the only non-trivial tight bounds on the maximal density of disk packings
have been obtained for cases where triangulated packings maximize the density. In-
deed, having a relatively simple combinatorial structure of the contact graph in the
optimal packings simplifies the problem. The three-dimensional version of triangu-
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lated packings are the simplicial packings — those whose contact graphs decompose
into tetrahedra.

The study of simplicial packings in higher dimensions is carried out in [KM23],
which generalizes the two-dimensional result of [Mes23] to arbitrary dimension. The
authors show that for any dimension d and any number n, the set of n-tuples ry,..., 7,
with r; < --- < r, = 1 for which there exists a simplicial packing in R? by spheres of
radii rq,...,7, (with spheres of each of the n sizes actually present) is finite. As we
have seen, there are only 9 radii r» with triangulated two-disk packings and 164 pairs
(r,s) with triangulated three-disk packings.

Close-packings in 3D are not simplicial: the contact graphs of the two local config-
urations around a sphere, represented in Figure 34, have quadrilateral faces. There-
fore, non-triangular faces are present in the contact graph of any close-packing. Unlike
disk packings, there is no simplicial packing of identical spheres in 3D.

It turns out that the only value » < 1 allowing simplicial packings by unit spheres
and r-spheres is v/2 — 1 [Fer21]. The simplicial packings of spheres of radii 1 and
V2 — 1, which we call salt packings, are constructed by taking a close-packing of unit
spheres and filling its octahedral gaps with small spheres (an example is given in
Figure 36), these are the orange and cherry packings from Section 1 (Fig 6). We call
the pair of spheres of radii 1 and v/2 — 1, the salt spheres.

Figure 36: An example of a salt packing.

The name chosen for this class of packings comes from chemistry: rock salt is the
name of mineral form of sodium chloride whose crystallographic structure corresponds
to a face-centered cubic packing of chloride ions whose octahedral voids are filled with
sodium ions. This structure is common among two-element crystals [Sei40].

All salt packings have the same density equal to

T 5%
5y = o (5\/5 _ 6) (5 _ \/§> 7~ 0.7931 ~ T9%.

We conjecture that this density is optimal:
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Conjecture 4.1. Salt packings maximize the density among packings by spheres of
radii 1 and /2 — 1.

This conjecture seems like a very complex project, especially in light of the effort
required to prove the Kepler conjecture. In cases where finding and proving an optimal
packing appears out of reach, we at least aim to obtain bounds on the optimal value.
Let us therefore derive a (non-tight) upper bound on the maximal density of packings
by salt spheres.

Before turning to our geometric approach, let us mention the analytic method of
Cohn and Elkies [CE03]. They use the Poisson summation formula together with a
carefully chosen auxiliary function to obtain upper bounds on the packing density
of the form f(0)/ f(O) For identical spheres this method gave record bounds in
dimensions 4-24, coming within a factor of less than 1.001 of optimal in dimensions
8 and 24 [Vial7, CKM™"17], mentioned in the introduction. This result was extended
to mixtures of sphere sizes in [DLDOFV14]. However, in low dimension, its precision
is limited: in 2D it is weaker than geometric bounds such as Florian’s (Section 3.2),
while in 3D it yields an upper bound of 0.813 for packings of salt spheres, which is
slightly worse than the geometric upper bound we explain below.

To obtain our upper bound, we follow the spirit of Florian’s method. It consisted
in bounding the packing density by the density inside the densest triangle; in 3D, we
do the same with the density inside the densest tetrahedron. The 3D version of a
triangulation, called a simplicial partition, is illustrated in Figures 37 and 38.

Figure 38: Intersection of this configura-
tion with the plane passing through the
centers of the spheres.

Figure 37: Boundaries of the Voronoi cells
of a three-sphere configuration.
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A detailed study of the geometric properties of tetrahedra in simplicial partitions
of packings by salt spheres combined with challenging interval arithmetic computa-
tions (75 hours of CPU time on an average laptop), the densest tetrahedron for each
quadruple of sphere radii was determined in [FP25].

Theorem 4.2. r = /2 — 1 Each of the following tetrahedra is of mazimal density
among those composed of the same spheres:

DA L e

51111 ~ 0.72093 511r7’ ~ 0.81056 517«” ~ 0.80650 5rrrr ~ 0.78478 5111r ~ (0.81254

This theorem implies an upper bound on the maximal density of a packing by salt
spheres, equal to the density of the densest of these tetrahedra:

0111 ~ 0.81254202781083486694360052888335222033874855926335447.

This value is higher than the conjectured maximal density (0.793) because a salt
packing, e.x., the one shown in Figure 36, consists of tight tetrahedra of types'® 1111
and 111r, rather than the densest tetrahedron of type 1117, which does not tile space.
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