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Abstract

The field of optimal packings belongs to the realm of “intuitive geome-

try” — a term introduced by László Fejes Tóth to describe geometry problems

that are easy to state but extremely difficult to solve. Today, “difficult” often

implies the need for computer assistance, as illustrated by the proofs of the Ke-

pler conjecture and the four-color theorem. Such problems lie at the interface

of the continuous and the discrete: to solve them, one must combine analytical

(continuous) methods and computer calculations (discrete). A solid theoretical

foundation is needed to make the computations feasible in terms of time and

memory. The proofs of the Kepler conjecture and of the four-color theorem

were eventually verified by computer, which is natural given that proofs of this

magnitude are impossible to fully check by hand, and their significance made

formal confirmation essential to the community. This inseparable triplet of com-

plicated conjecture, computer assistance, and eventual formal verification will

undoubtedly appear again in future results. In this article, we explore optimal

disk and sphere packings, a domain that originated with the Kepler conjecture,

where geometry and computation interact in various surprising ways.
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1. From coins to oranges and beyond

How should we place one-euro coins (i.e., congruent disks) on a table (two-

dimensional space) without overlap to cover as much surface as possible? After a

brief reflection, the reader probably imagined one of the arrangements in Figure 1.

The left-hand arrangement covers about 78% of the plane, while the right-hand one,

called the hexagonal packing, covers more than 90%. This pattern, optimal in terms

of coin packing, has been used by bees since long before humans started to play with

coins (Figure 2).

Figure 1: Two ways to arrange one-euro coins. Figure 2: A honeycomb.1

1Matthew T Rader, MatthewTRader.com, License CC-BY-SA
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Consider the analogous question in three dimensions: What is the densest way to

stack oranges? It turns out that the optimal packing is the one we see on market

stalls, as the one in Figure 3. It is constructed by superposing layers of spheres

centered on square grid, as shown in Figure 4, on the left. Viewed from the side,

we obtain the triangles of spheres from a hexagonal arrangement, depicted on the

right in Figure 4. In 1611, Kepler conjectured that this was the optimal way to pack

cannonballs [Kep11]. Remarkably, this conjecture was resolved only 400 years later by

a long computer-assisted proof [HF06]. We will come back to the Kepler conjecture

in Section 4.1.

Figure 3: Oranges at the market.2 Figure 4: Illustrations by Kepler [Kep11].

Those whose imagination is not confined to the physical world study optimal

sphere packings in higher dimensions. These problems have applications in infor-

mation theory, particularly in the construction of error-correcting codes. Thanks

to Viazovska’s breakthroughs, the sphere packing problem is now solved in dimen-

sions 8 and 24 [Via17, CKM+17]. She received the Fields Medal in 2022 for these

contributions.

Another generalization of the coin arrangement problem is to use coins of two

different sizes. For example, the best way to cover a table with the two coins

, ,

is shown in the middle of Figure 5. The solution depends on the ratio between the

coin sizes. The arrangements on the left and on the right in Figure 5 are optimal for

the corresponding ratios. In Section 3 we will discuss these results and also examine

other optimal arrangements with two and three coin sizes.

2https://www.reddit.com/r/oddlysatisfying/comments/b75dgf/this_display_of_

oranges/

20

https://www.reddit.com/r/oddlysatisfying/comments/b75dgf/this_display_of_oranges/
https://www.reddit.com/r/oddlysatisfying/comments/b75dgf/this_display_of_oranges/


OPTIMAL PACKINGS OF COINS AND ORANGES

Figure 5: Optimal arrangements for each pair of coin sizes.

Let us increase both the dimension of the space and the number of sphere sizes.

For example, consider the packing of oranges and cherries shown in Figure 6: each

cherry has exactly the right size to fit into the hole formed by an octahedron of six

oranges. This packing reproduces the configuration of sodium ions (cherries) and

chloride ions (oranges) in the crystalline structure of sodium chloride — the main

component of table salt. We will return to this “salt” packing in Section 4.

Figure 6: Inserting cherries in the optimal packing of oranges (left) to get the atomic
structure of the salt crystals (right).

This observation naturally points toward an application of packing problems:

chemists are interested in optimal disk and sphere arrangements because such config-

urations may help them to design compact materials using spherical nanoparticles of

prescribed sizes [PDKM15, HST12]. In fact, the self-assembly of spherical and cylin-

drical nanoparticles often corresponds to optimal disk or sphere packings [CCMFT23].

Figure 7 illustrates experimental results from [PDKM15].

Another, more down-to-earth application of optimal packings is actually packing

physical objects of realistic size — such as oranges in crates or cylindrical pipes in

shipping containers. Up to this point, we have focused on infinite packings of the
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Figure 7: Arrangements self-assembled from colloidal nanodisks and nanorods
in [PDKM15] precisely corresponding to optimal disk packings.

entire plane or of higher-dimensional spaces. In real life, objects must fit inside a

bounded region, and the optimal arrangements in containers are often quite different

from the optimal infinite packings. We begin our journey by studying finite disk

packings in circular and square containers in Section 2.

2. Disks in boxes

Our main question is the following: given n identical disks, what is the smallest

square (or circular) container in which they can be placed without overlap, and what

are the corresponding optimal arrangements? A variety of methods are used to study

this problem. Sometimes, we prefer to consider point arrangements instead of disk

packings, while at some point, we will even replace disks by billiard balls!

2.1. Points vs disks

For the sake of simplicity, let us first consider the case of a circular container. We

formally define the set of packings of n identical disks of radius r in a circle of radius

R as follows.

Pn(r, R) := {(b1, . . . , bn) such that bi ⊆ B(0, R) and int(bi) ∩ int(bj) = ∅ ∀i ̸= j},

where B(0, R) := {x ∈ R2 | |x| ≤ R} is the circular container of radius R centered in

the origin and b1, . . . , bn are disks of radius r with non-overlapping interiors (i.e., a

pair of disks can be tangent but can not intersect).

Let us now introduce the first two formulations of our problem.

Problem 1. Find the smallest circular container such that n unit disks fit inside,

Rn := min
Pn(1,R)̸=∅

R.

Problem 2. Find the biggest r such that n disks of radius r fit into the unit circular

container,

rn := max
Pn(r,1)̸=∅

r.
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They are equivalent: one can go from one to the other applying a simple homothety.

Lemma 2.1 (Problem 1∼Problem 2). P is an optimal packing of n unit disks, i.e.

P ∈ Pn(1, Rn), if and only if applying the 1
Rn

-homothety to P , we get an optimal

n-disks packing in a unit circle, i.e., 1
Rn
· P ∈ P (rn, 1), and rn = 1

Rn
.

We leave the proof of this lemma to the reader (see Figure 8 for illustration).

We define the set of n-point arrangements with pairwise distance at least d in a

circle of radius R as follows:

An(d,R) := {p1, . . . , pn ∈ R2 such that pi ∈ B(0, R) and |pi − pj| ≥ d ∀i ̸= j}.

Now let us consider two formulations of the optimal point arrangements problem.

Problem 3. Find the smallest circular container such that n points with pairwise

distance at least 1 fit inside,

R′
n := min

An(1,R′)̸=∅
R′.

Problem 4. Find the biggest d such that n points with pairwise distance at least d

fit inside the unit circular container,

dn := max
An(d,1)̸=∅

d.

Problem 3 and Problem 4 are equivalent for the same reason as before: it is enough

to apply an R′
n-deflation to a solution of Problem 3 to get a solution of Problem 4.

Moreover, they both are also equivalent to the disk packing problems:

Figure 8: Illustration of the equivalence between Problems 1–4 for n = 10.

Lemma 2.2 (Problem 1∼Problem 4). If P = {bi}ni=1 ∈ Pn(1, Rn) where bi = B(ci, 1)

then applying the 1
Rn−1

homothety to the centers of disks in P , we get an optimal

n-points arrangement in a unit circle, i.e., { ci
Rn−1
}ni=1 ∈ A(dn, 1) and dn = 2

Rn−1
.
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We leave the proof of this lemma to the reader — once again, Figure 8 illustrates the

transition.

In what follows, we will switch between the aforementioned formulations depend-

ing on the context. To go from one to another, it is enough to keep in mind the

following relations between the optimal values:

rn =
1

Rn

, dn =
2

Rn − 1
,

where rn is the radius of disks in an optimal disk packing in the unit circle, Rn is the

smallest radius of a circle containing n unit disks, and dn is the maximal value of the

minimal pairwise distance of n points in a unit circle.

In the same way, one can obtain the analogous relations for square containers (see

Figure 9):

rn =
1

Sn

, dn =
2

Sn − 2
, (□)

where rn is the radius of the disks in an optimal packing inside the unit square, Sn

is the smallest side length of a square that can contain n unit disks, and dn is the

maximal value of the minimal pairwise distance among n points in the unit square.

Figure 9: Illustration of the equivalence between different formulations for square
containers for n = 10.

2.2. Mathematical programming

Let us briefly recall some basic notions from mathematical programming. In

general, a mathematical programming problem is an optimization problem, where we

aim to find the best (min or max) value of a certain quantity, called the objective

value, subject to a set of constraints. A feasible solution is any choice of variables

that satisfies all the constraints, and the optimal solution is a feasible solution that

maximizes or minimizes the objective value, depending on the problem.
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Our packing problems are indeed optimization problems. The most direct way to

formulate them in terms of mathematical programming is to use the point-arrangement

version, where we try to maximize the minimal pairwise distance among the points

placed in a unit circle or square.

Let us introduce variables representing the coordinates of the points, together

with an additional variable t representing the squared minimal pairwise distance, to

get rid of the square root. Instead of using a min function, we impose a constraint for

each pair of points, ensuring that t is no greater than the squared distance between

the points. The optimal value dn is then equal to the square root of the maximal

objective value of this problem.

Maximize t

s.t. t ≤ (xi − xj)
2 + (yi − yj)

2 n(n− 1)

2
non-convex constraints

square container: 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1 2n linear constraints

circular container: 0 ≤ x2
i+y2i ≤ 1 n convex constraints

This is a quadratic, non-convex, inequality-constrained optimization problem.

This kind of problem is too hard for analytical approach and even with computer

assistance, using global optimization solvers, it is impossible to get solutions starting

from n = 6 [SMC+07]. In other words, we should never forget about geometry!

Before trying to find optimal solutions of this problem let us first find bounds on

the objective value.

2.3. Lower bound on dn

A lower bound on the optimal objective value is given by the objective value of

any feasible solution. Our goal is therefore to construct a feasible solution that is

good enough to provide a meaningful lower bound. We begin by showing how to

place at least 2s2√
3
points at pairwise distance at least 1 inside a square of side length

s, for any s ∈ R+.

We divide the square into horizontal bands of height
√
3
2
, starting from the bottom

of the square (the topmost band may be narrower). These bands are delimited by

the red segments in Figure 10. Let

N =

⌊
2s√
3

⌋
+ 1

denote the number of red segments. Place ⌊s⌋ + 1 points on each odd segment, so

that the first point is stuck to the left side of the square and each pair of neighbor

points is at distance 1. Now place
⌊
s− 1

2

⌋
+ 1 points on each even segment, so that
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Figure 10: Placing at least 2s2√
3
points at distance at least 1 in a square of side s.

the first point is at offset 1
2
from the left side of the square, and each pair of neighbors

is still at distance 1. This way, the minimal pairwise distance of all points in the

square equals 1.

The total number of points equals
N
2

(
⌊s⌋+ 1 +

⌊
s− 1

2

⌋
+ 1
)
, if N is even,

N−1
2

(
⌊s⌋+ 1 +

⌊
s− 1

2

⌋
+ 1
)
+ ⌊s⌋+ 1, if N is odd.

In both cases, the total number of points is at least equal to

Ns ≥ 2s2√
3
.

Scaling by d = 1
s
, we obtain an arrangement of at least 2

d2
√
3
points at distance at

least d in the unit square, for all d ∈ R+.

Finally, for any n ∈ N, taking d =
√

2
n
√
3
, we can place at least n points at

distance at least
√

2
n
√
3
in the unit square.

Thus, we obtain the lower bound of the objective value:

dn ≥

√
2

n
√
3
.

2.4. Upper bound on rn

To obtain an upper bound on the maximal pairwise distance, it is more convenient

to return to the disk-packing point of view. The upper bound on dn will be derived

from an upper bound on the maximal disk radius rn. To get this upper bound, we

first cut packings into small pieces.
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Given a set of points S ⊂ R2, the Voronoi cell Vor(p) of a point p ∈ S is defined

as the set points of the plane which are closer to p than to any other point from S.

More formally,

Vor(p) :=
{
q ∈ R2

∣∣ |p− q| ≤ |p′ − q| ∀p′ ∈ S \ {p}
}
.

A Voronoi cell is a convex, possibly unbounded, polygonal domain. The Voronoi

diagram of S is the union of the Voronoi cells of its points.

Figure 11: Voronoi diagram of a disk packing.

The Voronoi diagram of a disk packing is defined as the Voronoi diagram of the

disk centers, as illustrated in Figure 11.

What is the Voronoi cell of the smallest area in a packing of unit disks?3 First,

we can restrict ourselves to circumscribed polygons: indeed, if one of the sides of the

cell is not tangent to the disk, moving it closer to the disk only diminishes the area,

as shown on the left of Figure 12.

Figure 12: Illustration of minimizing the area of a Voronoi cell around a disk.

3Answered by Rogers who also obtained an upper bound in n-dimensional case [Rog58].
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Our aim now is to find the circumscribed polygon of minimal area. The area of a

k-gon circumscribed around a unit disk can be written as

k∑
i=1

tan
(αi

2

)
,

where αi are the angles between consecutives prependiculars drawn from the disk

center to the sides of the polygon (see the illustration on the left in Figure 12). Since

tan
(
x
2

)
is a convex function and the angles αi sum to 2π , we have

1

k

k∑
i=1

tan
αi

2
≥ tan

(∑k
i=1 αi

2k

)
= tan

π

k
.

Therefore, the circumscribed polygon of minimal area must be regular. The regular

hexagon is optimal among all regular circumscribed polygons with at most six sides.

A Voronoi cell with seven or more edges must have some of its sides at a noticeably

larger distance from the center, since at most six unit disks can touch a given unit

disk; this forces its area to be significantly larger than that of the regular hexagon.4

It follows that the Voronoi cell of the area in a packing of unit disks is a circumscribed

regular hexagon.

Let us now consider a feasible solution of Problem 3, i.e., a packing of n disks of

radius r in a unit square, as depicted in Figure 13. As shown above, the area of any

Voronoi cell is at least the area of a regular hexagon circumscribed around a disk of

radius r, which equals 2
√
3r2.

Figure 13: Voronoi diagram of
a disk packing in a square.

Figure 14: Lower and upper bounds on dn. Points
correspond to the best known arrangements; green
points are those proved optimal.

4You will find a complete formal proof of this fact in [MSS22].
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Since Voronoi cells are disjoint and their union is the unit square, we obtain

n · 2
√
3r2 ≤

n∑
i=1

area(Vor(ci)) = 1.

This implies an upper bound on the disk radius r in any feasible packing, and, there-

fore, on maximal disk radius rn. Using (□), we also obtain the upper bound on

dn:

rn ≤

√
1

2
√
3n

=⇒ dn =
2

1
rn
− 2
≤ 2√

2
√
3n− 2

.

Together, these bounds describe the behaviour of the optimal distance, shown in

Figure 14.

2.5. What is a solution?

When studying packing problems, it is important to clarify what we mean by a

“solution”. At the most basic level, one may obtain a numerical candidate packing,

produced for instance by hand at the blackboard, or by running a computer simulation

based on some heuristic. Without taking precautions, such a candidate may not even

be feasible (i.e., it may fail to form a valid packing) due to rounding errors, and its

objective value is generally unreliable.

If we verify that the numerical candidate from before does indeed satisfy all con-

straints, we obtain a feasible arrangement that may or may not be optimal; we call

this a candidate packing.

Beyond this, one may aim for an enclosure of the optimum, that is, a rigorously

certified interval of packings guaranteed to contain the optimal ones. Ultimately,

the goal is to obtain the set of optimal packings, feasible configurations that are

mathematically proved to be globally optimal.

In what follows, the early stages cannot be skipped: each level is essential for

reaching the next. We therefore begin by searching for numerical candidates, approx-

imate packings that seem “good enough” and can serve as starting points for further

refinement.

2.6. Billiards in a box

Several simulation approaches were developed to find good candidate configura-

tions, and the best results are in fact obtained by combining multiple methods. Here

we give just a few examples.

The billiard simulation method, introduced in 1990 [LS90], produced many “new”

candidates at the time. One starts with n identical disks of a small initial radius and
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random initial velocity vectors in a container. All disks then inflate simultaneously

while undergoing elastic collisions; inflation stops once motion is no longer possible.

This idea has remained at the core of the most effective techniques for producing

candidate packings until today.

In the modified billiard simulation [SMC+07] (also known as the pulsating disk

shaking algorithm), disks have no initial velocity prior to their first collision. Only

local interactions (circle-circle or circle-wall contacts) are stored, which significally

improves the speed of computations.

In the point-based method, we consider arrangements of points subject to repulsive

forces. This approach was introduced in [BDGL00] yielding new arrangements in

square containers up to n = 200. The algorithm proceeds as follows:

• Initialize n random points in the unit square; set ε = 1
4
.

• For each point, shift it by ε in one of four directions (left, up, right, down) in

order to increase its distance to its nearest neighbor; do not move it otherwise.

Repeat until no point is shifted.

• Reduce the step size: ε← 2ε
3
.

• Stop once ε is sufficiently small.

This algorithm must be run many times from different initial configurations to pro-

duce good results.

To verify the feasibility of the numerical candidate obtained at the end of the

simulation, one should use interval analysis. In interval arithmetic, numerical values

(e.x., point coordinates) are replaced by intervals, and each arithmetic operation is

performed so as to produce an interval guaranteed to contain all possible results.

An inequality between two intervals is considered to hold only if the corresponding

inequality is satisfied for every pair of values taken from the two intervals. Interval

arithmetic is implemented for programming languages such as C, C++, SageMath,

and Julia through dedicated numerical libraries, and is widely used in computational

geometry to obtain certified results.5

Interval arithmetic allows us to replace each point of the arrangement by a small

error-square and to check the constraints on all possible choices of points inside these

squares at once. If interval analysis confirms that the error-squares entirely satisfy the

constraints, then we obtain an enclosure of feasible arrangements. If some constraint

is not verified, each square is subdivided into four smaller squares, and the test is

5To better understand why floating-point arithmetic fails when it comes to geometry, please
see [KMP+08].
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repeated on all combinations of smaller squares. This subdivision process can be

continued as necessary.

2.7. Proving optimality by hand

For a small number of disks, optimal packings can be found (and their optimality

proved) entirely by hand. In fact, for all optimal packings in a circular container, the

existing proofs were obtained without the use of computers. Let us consider the cases

up to n = 7. The optimal point arrangements are depicted in Figure 15.

Figure 15: Optimal point arrangements in a circular container for n = 2, . . . , 7 [Spe25].

Lemma 2.3. Let p1, . . . , pn be n points lying in the unit disk. Then some pair of

points is at distance at most

max
(
1, 2 sin

(π
n

))
.

Proof. First, if some point p lies in the convex hull of a pair of points {pj, pk} (Fig-
ure 16, on the left), then its distance to one of them is at most 1, and the lemma

follows.

If p lies in the convex hull of more than two points, then it belongs to the triangle

formed by some three of these points. In that case, p is at distance at most 1 from

one of them (see Figure 16, middle).

Otherwise, every point p of the arrangement is outside the convex hull of the

remaining points. Therefore, p can be moved radially outward until it lies on the

boundary of the unit disk, without decreasing any of its distances to the other points,

as shown on the right of Figure 16. Thus, we may assume that all points p1, . . . , pn
lie on the boundary of the unit disk.

The points divide the circumference into n arcs. The total circumference is 2π,

therefore, at least one arc has length at most 2π
n
. The chord subtended by such an

arc has length at most 2 sin
(
π
n

)
, which yields the desired upper bound.
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Figure 16: Illustration of the proof of Lemma 2.3.

For 1 < n ≤ 6 points, one has sin
(
π
n

)
≥ 1

2
, and therefore, Lemma 2.3 implies

that dn ≤ 2 sin
(
π
n

)
. The arrangements where all points lie on the boundary are thus

optimal with dn = 2 sin
(
π
n

)
.

For n = 7, the optimal configuration consists of six points on the boundary and

one point at the center, d7 = d6 = 1.

The analogous proofs for higher number of points are significantly more compli-

cated. As of today, such proofs were given for n from 2 to 10 [Pir69], 11 [Mel94],

12 [Fod00], 13 [Fod03], and 19 [Fod99]. Figure 17 represents these optimal packings.

Pink disks, called rattlers, are free to move, yielding a continuum of optimal packings.

Figure 17: Optimal disk packing in a circle for n = 5, . . . 13, and 19 [Spe25].

2.8. Proving optimality by computer

For the square container, starting from n = 10 (with a few exceptions), the opti-

mality proofs rely on computer assistance. In this section, we use the case n = 10,

proved in [PWMdG92], as an example. We will first sketch how to obtain a certi-

fied enclosure of the optimal point arrangements using the so-called cell elimination

method, and then describe how the uniqueness of the optimal value inside this enclo-

sure is proved via shrinking error regions.

We begin with a good lower bound d on dn (for instance, for n = 10, one may

take d = 0.42). This bound is provided by a feasible candidate packing obtained in

the previous step (Section 2.6). Using this value, we decompose the unit square into

tiles of diameter at most d, which guarantees that each tile can contain at most one

point. In our example we use 16 tiles of size 1
4
× 1

4
.

We then choose a combination of n active tiles, i.e., tiles that are candidates for

containing a point, among the tiles of the decomposition (for n = 10 with 16 tiles this
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yields
(
16
10

)
possible choices). Figure 18 (left) shows one example of such a combination

of active tiles (in white).

Each tile is then partitioned into a grid of small cells (for instance, an 8 × 8

square grid). A cell is declared active if it may contain a point under the current

combination. The elimination step proceeds as follows: if a point were located in a

given cell (i0, j0) (red in Figure 18) of some tile t0 then every cell (i, j) in a neighbor

tile which violates

( |i− i0|+ 1 )2 + ( |j − j0|+ 1 )2 ≥ (8 d)2

cannot contain a point. Indeed, the above inequality means that every point of (i0, j0)

is at distance at most d from every point in (i, j).

Thus, each cell of t0 induces an exclusion region in adjacent tiles. By intersecting

all such exclusion regions we get the set of cells incompatible with the presence of a

point in t, which can thus be eliminated altogether (you can see this eliminated set

in Figure 18, for the bottom left active tile). If, after performing these eliminations

tile by tile, active cells still remain in each tile, the grid is refined by subdividing each

active cell into four smaller ones, and the elimination procedure is repeated.

If this iterative process eliminates all active cells in some tile for a given tile

combination, this combination cannot correspond to an optimal packing. Otherwise,

we obtain a validated enclosure of the true optimum, as in Figure 18, on the right.

For n = 31–33, certified enclosures are the best results available so far [Mar21].

For smaller values of n, however, the precise structure of the optimal arrangement

(or the set of optimal arrangements, as in cases with rattlers) is known for all n up

to 30 and for n = 36.

Figure 18: Illustration of active cell elimination process for n = 10.

We switch from points arrangements to disk packings for this part. The proof of

uniqueness follows a procedure structurally similar to the elimination method above,

but instead of working with square cells we use convex regions bounded by straight

lines and circular arcs. We begin by “guessing” the tangency graph of the optimal
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packing. From these tangencies we obtain approximate center positions, and around

each guessed center we place an initial error region: a disk of small error-radius ε

(white in Figure 19, on the left). These regions represent the admissible locations of

the centers in the optimal packing.

The elimination step now proceeds by cutting these error regions with straight

lines. Given two neighboring circles Ci and Cj, the region Ri can be used to remove

from Rj all points that cannot satisfy the tangency constraint with any point of Ri.

The endpoints of each cutting line are determined by examining all critical points on

the boundary of Ri. After performing all such cuts among all neighboring pairs, each

region becomes a convex polygon strictly contained inside its original error disk (see

Figure 19, in the middle).

At this stage, all regions have shrunk by a common contraction factor q < 1, so

the radii of the error disks can be updated from ε to qε. It turns out that, after scaling

all regions by this factor, the same sequence of cuts can be applied again. Iterating

this process produces a nested sequence of concentric shrinking error-disks, and these

converge to the unique packing compatible with the guessed tangency pattern. In

this way, the optimal packing is shown to be unique.

Figure 19: Example of shrinking error regions during the uniqueness proof for n = 13
from [PWMdG92].

2.8.1 Optimal disk packings in squares

Figure 20 illustrates packings of n unit disks in a square proved to be optimal

for n = 4, . . . , 30 and 36. For n = 1–9, the proof was obtained by hand [SM65,

Sch70], as well as for n = 14, 16, 25, 36 [KW87, Wen83, Wen87b, Wen87a]. Computer-

assisted methods seen above were used for n = 10–20 [dGPW90, PWMdG92], for

n = 21–27 [NO99], and for n = 28–30 [Mar07]. Notice that for n = 28 and 29,

even though the exact combinatorial structures (tangencies) of the globally optimal

packings are known, the exact solution of the algebraic systems of equations needed to
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obtain symbolic expressions for the coordinates (and the optimal value of the objective

function) has not yet been found. Consequently, these packings are described by their

structure together with very tight enclosures of the centers.

Figure 20: Optimal packings of n disks in a square for n = 4–30 and 36 [Spe25].

Figure 21 depicts the cases n = 31–33 with certified enclosures for the optima.

The width of each enclosure is at most 10−11, so the disk centers are shown as points:

the enclosure is invisible to the eye, although some of the indicated tangencies may

not occur in the true optimum (the structure of the packing is not fully determined).

These results are due to [Mar21].

Figure 21: Certified enclosures of optimal packings for n = 31–33 [Spe25].

3. Triangulations and scissors

Let us turn to infinite packings. This setting is different from container problems,

in particular, the mathematical program would involve infinitely many variables and

there is no bounded domain. Nevertheless, we will see that some methods are common

for both.

Let S be a set of disks. A plane packing of disks from S is a configuration of

copies of disks from S on the plane such that the disks do not overlap. To measure

the proportion of the plane covered by an arrangement, we introduce the notion of

density. Let P be a packing and let X be a compact subset of the plane. The density

of P inside X, denoted δ|X(P ), is formally defined as

δ|X(P ) :=
area(X ∩ P )

area(X)
.
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The density of the packing P , denoted δ(P ), is the proportion of the plane covered

by the disks of the arrangement.

δ(P ) := lim sup
n→∞

δ|Bn(P ),

where Bn denotes the disk of radius n centered at the origin.

Our main problem is the following: given a set of disks S, find the maximal

density of an arrangement of the plane with these disks. We denote this value by δS
and formally define it as follows:

δS := sup
P is a packing by S

δ(P ).

Any packing that reaches the maximal density is called optimal.

3.1. One-disk packings

Let us return to the subject with which we began: packings of identical disks

(or one-disk packings). For simplicity, we consider arrangements of unit disks.6 As

mentioned in the Section 1, the hexagonal packing, represented in Figure 22a, is

optimal. This was formally proved in 1942 by Fejes Tóth [FT42]. The density of the

hexagonal packing is equal to

δhex :=
π

2
√
3
≈ 0.9069 ≈ 91%.

We will now see how to prove this result. Our goal is to demonstrate that no

packing of unit disks is denser than the hexagonal one. A disk arrangement on

the plane is an infinite object, so we have to analyze an infinite number of infinite

objects. . . To make our problem a bit less “infinite”, we cut each packing into small

pieces and show that none of these pieces is denser than δhex =
π

2
√
3
.

This will conclude the proof: indeed, once the density of each individual piece is

bounded, the density of every finite portion of the packing is bounded by the same

value, and by definition this bounds the density of the entire packing. Therefore, no

packing of unit disks in the plane can be denser than the hexagonal packing.

A packing P of disks from S is called saturated if it is impossible to place more

copies of disks from S on the plane without intersecting the disks in P . From now

on, we only consider saturated packings: indeed, inserting disks in a packing does not

decrease the density, so an upper bound on the density of saturated arrangements

is an upper bound for all arrangements. Figure 22 represents saturated packings;

examples of non-saturated 2-disk arrangements are given in Figures 26a and 26c.

6The density of an arrangement does not change if a homothety is applied.
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There are two natural ways to cut a packing into pieces, leading to two distinct

proofs: one based on polygons and another based on triangles.

The first approach is to use the Voronoi diagram to partition the packing, as we

already did for packings in containers in Section 2. To obtain an upper bound on the

maximal pairwise distance, we rely on the fact that the smallest Voronoi cell of a unit

disk is the circumscribed regular hexagon, whose area equals 2
√
3 [Rog58]. Hence,

the density inside any Voronoi cell of a unit disk in a packing is at most π
2
√
3
, which

completes the proof.

The second method, used in [Thu10] and [FT53], is to decompose the arrangement

into triangles whose vertices are the centers of the disks. Let us draw the dual graph

of the Voronoi diagram: its vertices correspond to the disk centers, and two centers

are connected by an edge if and only if their Voronoi cells share a boundary. This

graph, shown in black in Figure 22, is called the Delaunay triangulation [Del34] of

the packing.7

(a) Hexagonal arrangement. (b) Another saturated arrangement.

Figure 22: Voronoi Diagrams and Delaunay triangulations.

It turns out that, by fundamental properties of Delaunay triangulations of satu-

rated arrangements, the area of any Delaunay triangle is at least
√
3.8 The intersection

of such a triangle with the disks of the packing consists of three circular sectors whose

angles sum to π. Hence, the total intersection area is always π
2
. Then the density of

each Delaunay triangle is at most π/2√
3
, which completes our second proof.

3.2. 2-disk packings

Now that we know the optimal packing of identical disks, in addition to the unit

disks
( )

, let us also use copies of a second, smaller, disk of radius r ( ). The

maximal density of two-disk packings with the unit disk and the small r-disk is

denoted δr.

7More precisely, one can always obtain a triangulation from the dual graph. For an algorithmic
perspective on Delaunay triangulations, see [GO04].

8A simple proof of this fact can be found in [CW10].
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For certain values of r, the optimal packings are known: for instance, the 9 ar-

rangements depicted in Figure 27. For other values, the maximal density δr is still

unknown, so we at least try to find bounds for it. For example, by using only one of

the disks, we can always achieve the density of the hexagonal arrangement δhex =
π

2
√
3
;

this gives us a lower bound for the maximal density regardless of the radius of the

small disk. This bound is traced in green in Figure 25.

The use of the second disk potentially allows for a density greater than δhex. For

example, if the small disk fits into the gap between three pairwise tangent large disks,

placing a small disk in each gap of the hexagonal arrangement strictly increases the

density9. On the other hand, if the radius of the small disk approaches 1, the use of

the second disk does not increase the maximal density.

The definition of the Delaunay triangulation extends quite naturally to arrange-

ments with multiple disk sizes. This generalization, introduced in [FTM58], is called

the FM-triangulation. The only novelty in this setting is that a Voronoi cell is de-

fined as the set of points closer to a given disk than to any other disk in the packing;

thus, an edge separating two disks of different radii is a hyperbolic arc rather than a

straight line10.

Florian used this triangulation to obtain an upper bound on the maximal density

of a two-disk packing [Flo60]. He showed that, regardless of the arrangement, no

triangle of its triangulation is denser than the triangle formed by two small disks and

one large disk, all mutually tangent. Figure 25 (in blue) traces the Florian bound on

the maximal density as a function of the value of r.

Nine years later, Blind obtained another bound using a different cutting rule: he

considered power diagrams rather than Voronoi partitions or FM-triangulations [Bli69].

The power Π of a point X with respect to a disk D is the square of the distance from

X to D, more formally, it is defined as

ΠD(X) := |OX|2 −R2,

where O is the center and R the radius of the disc. Given a packing P , its power

diagram is a partition of the plane into power cells associated to the discs; each cell

consists of the points whose power distance to a given disk is smaller than to any

other disk in P . The cells of the power diagram are all convex and polygonal.

Note that the power diagram of a packing of identical disks coincides with its

Voronoi partition. Figures 23, 24 depict respectively the Voronoi partition and the

9Moreover, if the size of the small disk tends to zero, we can pack the small disks in a hexagonal
manner inside the gaps and obtain the density δhex + (1− δhex)δhex ≈ 99%.

10For more details, the reader may consult Chapter VI of Fejes Tóth’s book [FT64]. Readers who
read German may also refer to the original paper [FTM58].
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power diagram of a disc packing.

Figure 23: The Voronoi partition. Figure 24: The power diagram.

Blind bounded the maximal density of an arrangement by the density of the

union of a regular heptagon circumscribed around a unit disk and a regular pentagon

circumscribed around a disk of radius r. The Blind bound is traced in red in Figure 25;

note that this bound provides a threshold qB ≈ 0.74 (•) such that for any r greater

than qB, the densest arrangement is the hexagonal arrangement using only a single

disk size.

3.3. Triangulated packings

Finding optimal packings for each pairs of disk sizes is difficult. Let us start from

the other end: which packings seem very dense? We have shown that for identical

disks, the hexagonal packing is optimal. Its triangulation is composed of identical

triangles formed by three mutually tangent disks (Figure 22a). Let us generalize this

property.

First, we define the contact graph of a packing as a graph whose vertices are the

centers of the disks and each edge corresponds to a pair of tangent disks (Figures 26c–

26d depict four examples of arrangements with their contact graphs). A packing

is called triangulated if its contact graph is a triangulation, i.e., all its faces are

triangular; Figures 26c, 26d show two examples of triangulated arrangements. An

informal definition is that each of the “gaps” of a triangulated packing is delimited

by three mutually tangent disks. As illustrated by Figure 26, the properties of being

triangulated or saturated are orthogonal.

In [FT84], Fejes Tóth calls triangulated arrangements “compact”: they do not

have large gaps, so they intuitively seem to be the most compact. Furthermore,
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Figure 25: The bounds of Florian (in blue) and Blind (in red) as well as the density
of the hexagonal arrangement (in green). The radius qB (•) is the threshold value of
r above which the hexagonal arrangement is optimal: i.e., the use of the second disk
does not increase the maximal density.

(a) Non-saturated
non-triangulated.

(b) Saturated
non-triangulated.

(c) Non-saturated
triangulated.

(d) Saturated
triangulated.

Figure 26: Examples of packings.

around each disk, its neighbors form a “crown” of tangent disks that appear to be

a locally optimal configuration. For these reasons, saturated triangulated packings

seem to be the best candidates for maximizing density.

We call a value of r triangulated if it allows for triangulated packings using both
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unit disks and disks of radius r. Not all values of r are triangulated: to understand

this, we invite the reader to try to arrange coins of two sizes on a table in a perfectly

triangulated manner11.

In 2006, Kennedy demonstrated that there are only 9 values of r allowing trian-

gulated packings in which both disk sizes are present. We denote these values by

r1, . . . , r9; their corresponding triangulated packings are shown in Figure 27. Each of

these packings is periodic, meaning that there exist two non-collinear vectors, called

periods, such that translating the packing by either vector leaves it unchanged. In

this work, we always consider packings of the entire plane, and since the triangulated

packings depicted here and below are all periodic, it is sufficient to represent their

fundamental domain (a parallelogram spanned by the period vectors, marked in black

in Figure 27) to see how the entire plane is packed.

Figure 27: Periodic triangulated binary packings corresponding to cases b1, . . . , b9.

A pair of disks with radii 1, ri, i ∈ {1, . . . , 9} is called a binary case. The binary

cases are designated by b1, . . . , b9. It turns out that for each of the nine binary

cases, the density is maximized by a triangulated binary disk packing — one of

those shown in Figure 2712. Heppes in [Hep00] showed that the triangulated disk

packing of b4 (represented in Figure 27), where r4 =
√
2 − 1, maximizes the density

among all two-disk packings with disks of radii 1 and r4. Three years later, Heppes

generalized his method to cover five other cases: b1, b3, b6, b7 and b8 [Hep03]. Despite

his efforts, that proof is difficult to understand due to the complex case analysis

carried out by hand; this is why subsequent results in the area are computer-assisted.

Indeed, separating the proof into a sequence of clear, human-readable ideas from the

computer code handling the case enumeration allows both better understanding and

greater reliability. The next step was made by Kennedy, who introduced the method

of localizing potentials, inspired by the potentials of classical statistical mechanics.

This new approach allowed him to treat b2 [Ken05]. Finally, the fully computer-

assisted method required to solve the two remaining triangulated cases, b5 and b9,

was provided by Bedaride and Fernique [BF22].

11In reality, using two-euro and one-cent coins, one can approximate a triangulated arrange-
ment. . . The motivated reader is invited to find it.

12These packings are not the only triangulated packings corresponding to the triangulated radii
ri. There is an infinite number of triangulated packings for certain radii, as described in [Ken06].
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By modifying the method used in the previous result, Fernique obtained new

bounds on the density, which provide an almost complete description of the behavior

of the maximal density as a function of the size of the small disk r [Fer22]. These

bounds are shown in Figure 28.
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Figure 28: The Fernique bounds.

3.4. 3-disk packings

Using more disk sizes potentially allows for denser packings, but it also increases

the combinatorial complexity of the problem which complicates the study. We saw

earlier that the hexagonal packing, the only triangulated packing of identical disks,

is optimal. We also learned that whenever a pair of disk sizes admits a triangulated

packing, a triangulated packing is in fact optimal. These results naturally suggest

the following conjecture.

Conjecture 3.1 (Connelly, 2018 [CGSY18]). If a finite set of disks allows a saturated

triangulated packing, then the density of a packing using these disks is maximized by

a triangulated packing.

As the statement above is true for one-disk packings and two-disk packings, the

next step is to verify it for three-disk packings (or ternary packings). First, we must

42



OPTIMAL PACKINGS OF COINS AND ORANGES

find the disk sizes allowing triangulated ternary packings. This problem was solved

in 2021: there are 164 pairs (r, s) allowing triangulated packings with disks of radii

1, r, s, 1 > r > s [FHS21].

Here and later, a triplet of disks with the radii associated with each of these pairs

is called a triangulated triplet. Triangulated triplets are indexed by positive integers

from 1 to 164, as in [FHS21].

Figure 29: The triangulation of a triangulated
packing and two of its triangles.

Figure 30: Illustration of den-
sity redistribution.

Unlike one-disk packings, a simple triangulated partition is not sufficient to demon-

strate the optimality of a multi-disk packing. This is due to the fact that a packing

with multiple disk sizes feature several types of triangles (Figure 29), some of which

are denser than the density of the triangulated packing. To obtain the proof of opti-

mality, we use a method which was called “cell balancing” in [Hep03]; it consists in

redistributing the density among the triangles. Indeed, even if certain triangles are

particularly dense, some of their neighbors are very “empty,” as illustrated in Fig-

ure 30. The method has two steps: first, we locally redistribute the density among

selected cells while preserving the global density. Then we prove that, after redistri-

bution, the density of every triangle in the packing remains below the target density.

Computer assistance is required for several parts of the proof: an extensive case

analysis and symbolic computations are needed to construct the redistributed density

function, and interval analysis combined with recursive subdivision (as introduced in

the context of packings in containers in Section 2.8) is then used to verify the density

bound over the entire space of possible triangles.

This method yields a proof of optimality for the 16 packings shown in Fig-

ure 31 [FP23]. It also established the optimality of the two-disk triangulated packings

depicted in Figure 27 for 16 triplets from Figure 32. These are the cases were intro-

ducing the third disk size (blue disk) does not increase the maximal density.

The bad news is that the conjecture is false: there are at least 45 counterexamples.

When the ratio between two of the three disks is close to that of an optimal binary

packing, it is possible to arrange the three disks in a similar (non-triangulated) way
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Figure 31: Optimal three-disk packings.

Figure 32: The ternary cases where the optimal packings use only two out of three
disks. For cases 1 to 5, this is the triangulated packing of b8 (Figure 27); for case 6
— b4; for cases 7 to 9 — b7; for cases 10 to 15 — b9; for case 19 — b6.

and still obtain a high density. The density of triangulated binary packings (rep-

resented by Figure 27) exceeds the density of the majority of triangulated ternary

packings, which suggests using them to find counterexamples (that is, disk triplets

having a non-triangulated packing that is denser than any triangulated packing).

The pairs of disks allowing binary triangulated packings are designated by b1, . . . , b9,

while the triplets with ternary triangulated packings are indexed by positive integers

from 1 to 164. Let us illustrate this method with an example. Take case 73; its

triangulated ternary packing is shown in Figure 33, on the right. Notice that the

radius of the smallest disk (s73 ≈ 0.264) in case 73 is close to the radius of the small

disk (rb7 ≈ 0.281) in case b7.

We deform the binary triangulated packing b7 (Figure 33, on the left), by replacing

the small disk of b7 with the smallest disk of case 73. These deformations are inspired

by the flip-and-flow method introduced in [CG21]13. We choose a deformation that

breaks the fewest contacts between the disks, it is given in the center of Figure 33.

Notice that the only broken contact is between the pair of red disks: they are no longer

13Flip is for flipping an edge in the contact graph of the packing, flow — for the continuous
deformation which follows.
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δb7 ≈ 0.931901 rb7 ≈ 0.280776 δ ′ 73 ≥ 0.924545 s73 ≈ 0.263654 δ73 0.920565 s73 ≈ 0.263654

Figure 33: On the left: a binary triangulated packing of case b7. In the middle: its
deformation where the small disks are replaced by the smallest disks of case 73. On
the right: a periodic triangulated packing of case 73, its fundamental domain and its
description are given in [FHS21].

tangent. The density of the deformed packing is slightly higher than the density of

the triangulated ternary packing, making it a counterexample.

4. Salt, tetrahedra and computer

4.1. One-sphere packings

The packing of “cannonballs” described by Kepler in his manuscript [Kep11] is

known today as the face-centered cubic packing (or FCC). It is a regular packing: the

centers of the spheres are arranged at the vertices of the FCC lattice, which gave the

packing its name. Figure 34, on the left, depicts the local configuration of the FCC

packing. An equally dense compact packing generated by another regular lattice, the

hexagonal close-packing (or HCP), was first mentioned by Barlow in 1883 [Bar83]

(Figure 34, on the right). There is actually an infinite family of globally distinct

compact packings, all having the same density

π

3
√
2
≈ 0.7404 ≈ 74%,

they are called the close-packings. Every close-packing is constructed by stacking

layers of spheres whose centers form the hexagonal lattice on the plane; each new

layer can be placed in two different ways relative to the two previous layers (see

Figure 35), so we obtain an uncountable number of packings in the end. There are,

however, only two local configurations around a sphere, represented by Figure 34,

that appear in close-packings; their Voronoi cells are both of density π
3
√
2
.

Gauss in 1831 [Gau31] established a link between lattices and quadratic forms
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Figure 34: FCC (left) and HCP (right) local configurations of spheres and their
contact graphs.

Figure 35: Layer-by-layer construction of compact packings of congruent spheres.

which implied that compact packings maximize the density among lattice packings14.

The general result turned out to be much more difficult. The conjecture remained

open for 400 years, and was even included in Hilbert’s list of problems as part of the

18th problem [Hil02]. In the following years, researchers used various approaches to

obtain increasingly tighter upper bounds on the maximal density of sphere packings.

Blichfeldt obtained the first upper bounds (0.884 and 0.835) in 1919 and 1929 [Bli19,

Bli29]. In 1958, Rogers bounded the density of a packing by the density inside the

tetrahedron formed by four pairwise tangent spheres (we call such tetrahedra tight

tetrahedra), equal to ≈ 0.7796, [Rog58]. The best upper bound before the resolution

of the Kepler conjecture was given by Muder [Mud93] and is ≈ 0.773055.

The Kepler conjecture is a continuous optimization problem (we are trying to

maximize the density function over the set of all packings) with an infinite number

of variables (there are an infinite number of spheres to pack). László Fejes Tóth

14i.e. those where sphere centers form a lattice
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took a great step towards the proof of the Kepler conjecture by proposing to use

the local density approach [FT53]. This approach makes it possible to reduce this

infinite-dimensional optimization problem to one having a finite number of variables.

Furthermore, he was the first to suggest the use of a computer; in his book on regular

figures [FT64], he writes:

Given the complexity of this function, we are far from attempting to

determine the exact minimum. But, aware of the rapid development of

our computers, it is imaginable that the minimum could be approximated

with great accuracy.

The initial approach by Hales to the Kepler conjecture [Hal92, Hal93] was based

on the Delaunay partition of space but did not lead to a complete proof. He there-

fore adopted a hybrid partition involving Delaunay simplices together with modified

Voronoi cells. In collaboration with Ferguson, Hales completed the first full version

of the proof in 1998. The global idea of the proof is similar in spirit to the density

redistribution method we saw for disk packings, but in three dimensions everything

becomes far more complicated; extensive computer assistance is required for several

parts of the argument. The proof consisted of six preprints and tens of thousands of

lines of computer code. It took several years of intensive reviewing before the team

of 12 referees declared themselves “99% sure” of its correctness, and a fully revised

complete version was finally published in 2006 [HF06]. In the meantime, an abridged

version of the proof had appeared in the Annals of Mathematics [Hal05].

In 2003, Hales launched a global collaborative project to obtain a formal proof of

the Kepler conjecture. The project was named Flyspeck, which is an expansion of

“FPK”, for “the Formal Proof of the Kepler conjecture”. The goal of the project was

to construct a complete formal proof verifiable by proof assistants such as HOL Light

and Isabelle. Flyspeck was completed in 2014; three years later, after meticulous

review by the mathematical community, the formal proof was accepted by the Forum

of Mathematics [HAB+17].

You will find detailed insights on the history of the Kepler conjecture and its proof

up to 2003 in Szpiro’s popular book [Szp03].

4.2. Two-sphere packings

In 2D, the only non-trivial tight bounds on the maximal density of disk packings

have been obtained for cases where triangulated packings maximize the density. In-

deed, having a relatively simple combinatorial structure of the contact graph in the

optimal packings simplifies the problem. The three-dimensional version of triangu-
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lated packings are the simplicial packings — those whose contact graphs decompose

into tetrahedra.

The study of simplicial packings in higher dimensions is carried out in [KM23],

which generalizes the two-dimensional result of [Mes23] to arbitrary dimension. The

authors show that for any dimension d and any number n, the set of n-tuples r1, . . . , rn
with r1 < · · · < rn = 1 for which there exists a simplicial packing in Rd by spheres of

radii r1, . . . , rn (with spheres of each of the n sizes actually present) is finite. As we

have seen, there are only 9 radii r with triangulated two-disk packings and 164 pairs

(r, s) with triangulated three-disk packings.

Close-packings in 3D are not simplicial: the contact graphs of the two local config-

urations around a sphere, represented in Figure 34, have quadrilateral faces. There-

fore, non-triangular faces are present in the contact graph of any close-packing. Unlike

disk packings, there is no simplicial packing of identical spheres in 3D.

It turns out that the only value r < 1 allowing simplicial packings by unit spheres

and r-spheres is
√
2 − 1 [Fer21]. The simplicial packings of spheres of radii 1 and√

2− 1, which we call salt packings, are constructed by taking a close-packing of unit

spheres and filling its octahedral gaps with small spheres (an example is given in

Figure 36), these are the orange and cherry packings from Section 1 (Fig 6). We call

the pair of spheres of radii 1 and
√
2− 1, the salt spheres.

Figure 36: An example of a salt packing.

The name chosen for this class of packings comes from chemistry: rock salt is the

name of mineral form of sodium chloride whose crystallographic structure corresponds

to a face-centered cubic packing of chloride ions whose octahedral voids are filled with

sodium ions. This structure is common among two-element crystals [Sei40].

All salt packings have the same density equal to

δh :=
π

3
√
2

(
5
√
2− 6

)(5

3
−
√
2

)
π ≈ 0.7931 ≈ 79%.

We conjecture that this density is optimal:
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Conjecture 4.1. Salt packings maximize the density among packings by spheres of

radii 1 and
√
2− 1.

This conjecture seems like a very complex project, especially in light of the effort

required to prove the Kepler conjecture. In cases where finding and proving an optimal

packing appears out of reach, we at least aim to obtain bounds on the optimal value.

Let us therefore derive a (non-tight) upper bound on the maximal density of packings

by salt spheres.

Before turning to our geometric approach, let us mention the analytic method of

Cohn and Elkies [CE03]. They use the Poisson summation formula together with a

carefully chosen auxiliary function to obtain upper bounds on the packing density

of the form f(0)/f̂(0). For identical spheres this method gave record bounds in

dimensions 4–24, coming within a factor of less than 1.001 of optimal in dimensions

8 and 24 [Via17, CKM+17], mentioned in the introduction. This result was extended

to mixtures of sphere sizes in [DLDOFV14]. However, in low dimension, its precision

is limited: in 2D it is weaker than geometric bounds such as Florian’s (Section 3.2),

while in 3D it yields an upper bound of 0.813 for packings of salt spheres, which is

slightly worse than the geometric upper bound we explain below.

To obtain our upper bound, we follow the spirit of Florian’s method. It consisted

in bounding the packing density by the density inside the densest triangle; in 3D, we

do the same with the density inside the densest tetrahedron. The 3D version of a

triangulation, called a simplicial partition, is illustrated in Figures 37 and 38.

Figure 37: Boundaries of the Voronoi cells
of a three-sphere configuration.

Figure 38: Intersection of this configura-
tion with the plane passing through the
centers of the spheres.
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A detailed study of the geometric properties of tetrahedra in simplicial partitions

of packings by salt spheres combined with challenging interval arithmetic computa-

tions (75 hours of CPU time on an average laptop), the densest tetrahedron for each

quadruple of sphere radii was determined in [FP25].

Theorem 4.2. r =
√
2 − 1 Each of the following tetrahedra is of maximal density

among those composed of the same spheres:

δ1111 ≈ 0.72093 δ11rr ≈ 0.81056 δ1rrr ≈ 0.80650 δrrrr ≈ 0.78478 δ111r ≈ 0.81254

This theorem implies an upper bound on the maximal density of a packing by salt

spheres, equal to the density of the densest of these tetrahedra:

δ111r ≈ 0.81254202781083486694360052888335222033874855926335447.

This value is higher than the conjectured maximal density (0.793) because a salt

packing, e.x., the one shown in Figure 36, consists of tight tetrahedra of types15 1111

and 111r, rather than the densest tetrahedron of type 111r, which does not tile space.
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[Mar21] M. C. Markót. Improved interval methods for solving circle packing problems

in the unit square. Journal of Global Optimization, 81(3):773–803, 2021.

[Mel94] H. Melissen. Densest packings of eleven congruent circles in a circle. Geome-

triae Dedicata, 50(1):15–25, 1994.

[Mes23] M. Messerschmidt. The number of configurations of radii that can occur

in compact packings of the plane with discs of n sizes is finite. Discrete &

Computational Geometry, 2023.

[MSS22] A. Mazel, I. Stuhl, and Y. Suhov. Minimal area of a voronoi cell in a packing

of unit circles, 2022.

[Mud93] D. J. Muder. A new bound on the local density of sphere packings. Discrete

& Computational Geometry, 10(4):351–375, 1993.

[NO99] K. J. Nurmela and P. R. J. Osterg̊ard. More optimal packings of equal circles

in a square. Discrete & Computational Geometry, 22(3):439–457, 1999.

[PDKM15] T. Paik, B. T. Diroll, C. R. Kagan, and C. B. Murray. Binary and ternary

superlattices self-assembled from colloidal nanodisks and nanorods. Journal

of the American Chemical Society, 137(20):6662–6669, 2015.

[Pir69] U. Pirl. Der Mindestabstand von n in der Einheitskreisscheibe gelegenen

Punkten. Mathematische Nachrichten, 40:111–124, 1969.

[PWMdG92] R. Peikert, D. Würtz, M. Monagan, and C. de Groot. Packing circles in

a square: A review and new results. System Modelling and Optimization,

Proceedings of the Fifteenth IFIP Conference, 180:45–52, 1992.

[Rog58] C. A. Rogers. The packing of equal spheres. Proceedings of the London

Mathematical Society, s3-8(4):609–620, 1958.

[Sch70] B. L. Schwartz. Separating points in a rectangle. Journal of Recreational

Mathematics, 3(4):195–204, 1970.

[Sei40] F. Seitz. The Modern Theory Of Solids. International Series in Physics. New

York McGraw-Hill Book Co., Inc., 1940.

[SM65] J. Schaer and A. Meir. On a geometric extremum problem. Canadian Math-

ematical Bulletin, 8(1):21–27, 1965.
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