Pittsburgh Interdisciplinary Mathematics Review 4 (2026), 1-17

Diffusion models

A high level mathematical overview

Stephan Wojtowytsch

(Communicated by Lark Song
Copyedited by Bridget Vaughan)

1. Introduction

Diffusion models are tools of deep learning which underpin Al image generators
such as Stable Diffusion and DALL-E. While some of these ideas have existed since at
least 2015 and theoretical foundations were laid in the 1980s, they became popularized
in the 2020 article [SSDK20]. Here, we summarize some of the ideas of ‘score-based’
diffusion models and their theoretical underpinning.

Generative Al is often framed as a modern version of the problem of ‘sampling’
in statistics. For instance, generating an image of a human face in RGB format
with resolution 256 x 256 can be considered as producing a sample from a prob-
ability distribution on the corresponding ‘space of images,” a space of dimension
256 - 256 - 3 = 196, 608. This probability distribution feels different from the ones we
encounter in introductory classes on statistics: it assigns zero probability to most of
the space (randomly chosen color values per pixel, constant colors, images of anything
but human faces) and in some models, it even gives all probability to a moderate-
dimensional ‘surface’ (say, a few dozen dimensions) in this very high-dimensional
ambient space. We are currently interested in the ‘support’ of the probability dis-
tribution as the set of reasonable images of faces, not so much the probabilities it
assigns to different sub-classes. Still, this way of modeling allows us to use a variety
of well-developed tools below.

Naturally, we have no way of writing a probability distribution on the nearly
200,000-dimensional space of images in any neat way. We cannot hope to find a
formula. All we have access to is a dataset, a collection of ‘samples’ from the true
underlying distribution. If we have n data points' xi, ..., z,, which we interpret as

! Note that each ‘data point’ z; is a vector in our very high-dimensional space R?, d = 200, 000!!

STEPHAN WOJTOWYTSCH

samples from the right probability distribution, we can define the ‘empirical distri-
bution’ of the dataset % > iy 05, which gives probability 1/n to each data point (and
zero to the rest of space). This is a coarse proxy, but we can use it in computations.

This perspective of generation as sampling is prevalent in many areas of generative
Al Diffusion models are merely one way in which models can generate samples based
on imitating (and reversing) the mechanisms underlying physical diffusion.

In this article, we only assume that the reader is familiar with calculus in di-
mension d > 3 (norm, gradient, divergence, Laplacian) and the basics of probability
theory (probabilities, expectations, uniform and normal distributions). We therefore
focus primarily on general ideas, not technical details or specifics of practical imple-
mentation. Of course, to make diffusion models run efficiently on real world data,
substantial skill is required beyond theoretic understanding.

Diffusion models combine two ideas: Sampling in statistics and diffusion in physics.
We discuss some background information on both in Sections 2 and 3 respectively
before describing how to combine them in Section 4.

2. Sampling in Statistics

Let us start with a much older version of the sampling problem: Write a program
which emulates a fair coin toss. If we expect the program to be run once, we can
solve this without much coding: We toss a coin and simply tell the program to return
the result of that one coin toss. If we expect to run the program often, however, an
attentive user will quickly catch on that we are not doing what we claim. So, how do
we generate outputs that look like fair coin tosses even if we want many of them?

The problem here is that there is no true randomness in a computer program.
Instead, we work with ‘pseudo-random’ numbers which have the right ‘statistical
properties’ and are unpredictable enough to be useful. For instance, we can fix our
favorite irrational number ¢ and look at the non-integer part of £,2¢£,3,... in the
interval from 0 to 1. Statistically, these will be distributed according to the uniform
distribution (i.e. if we fix any interval between numbers a and b, then the non-integer
part of n lies between a and b roughly with frequency b— a).2 In more precise terms,

lim #{k=1,...,n}: k& — k] € (a,b)}

n— 00 n

=b—a.

To emulate fair coin tosses, we could then select an irrational number® at programming
time, and whenever a user calls the program to generate N coin tosses, we select

2 If we used £ € Q instead, we would eventually see repetition and entirely miss short intervals.
3 Or rather, a computer representation of one.

DIFFUSION MODELS

a semi-random starting point k in a fashion that guarantees variety (for instance,
number of seconds elapsed since midnight on February 28, 1787) and return the non-
integer part of (k+ 1)&,...,(k+ N)& This can be interpreted as heads if it is less
than 1/2 and tails if it is more than 1/2.

Naturally, technical issues abound. If ¢ is much smaller than 1, for instance, this
would lead to very long consecutive sequences of heads and tails...

Assume that we have a good way of generating random numbers that look like
they are independent and uniformly distributed between 0 and 1. Similar to the
way we converted these uniformly distributed random numbers between 0 and 1 into
outputs heads and tails, we can generate samples from other probability distributions
P by means of the cumulative distribution function ® of the distribution given by

t

®(t) = P(a random sample z from P is below t) = / p(x)dx

—0o0

where p is the density of P. For instance, p(x) = \/LQ? exp (—%) for a standard

normal distribution. Since &' = p > 0 (at least in the example), is strictly monotone
increasing and we can find an inverse function of ®.# Then, if z is distributed uniformly
between 0 and 1, we have

t=Px<t)=P(® '(z) <2 '()) = O(s)=P(® '(z) <s)

where we used the monotonicity of ®~' and substituted ¢t = ®(s). So, ®(z) is
a random quantity with cumulative distribution function ®, meaning that if we can
compute @1, we can transform uniformly distributed random points between 0 and 1
into random samples from the distribution with the cumulative distribution function
o.

This allows us to generate samples from many distributions in one dimension and
also for instance from the d-dimensional normal distribution (just generate d inde-
pendent samples from a one-dimensional normal distribution for the d coordinates).

We glossed over much of the detail, but the strategy is clear:

1. Find a mechanism to generate a convincing imitation of independent random
samples from one probability distribution P (uniform on [0, 1] in our example).

2. Find a way to transform those samples to something that looks like random
samples from a different probability distribution Q that we are actually in-
terested in (equal probability of ‘heads’ and ‘tails’ or normal in the examples
above).

4 The inverse function is defined by the identity ®~1(®(t)) = ¢ for all admissible inputs ¢ — think
2?2 and /7 or exp(z) = €% and log(z).

STEPHAN WOJTOWYTSCH

At a high level, diffusion models are a different implementation of the same strat-
egy in a much more challenging scenario. The ‘easy’ distribution is a high-dimensional
normal distribution which we can sample by using the approach we just discovered.
The tricky part is step 2: How do we transform samples from the normal distribution
(images with the right shape, but random noise entries for all color channels of all
pixels) to a realistic image (a ‘sample from the original distribution’)?

3. Stochastic Analysis and Partial Differential Equations

Differential equations of various kinds (ordinary, partial, stochastic) are among
the most popular tools of mathematical modeling across applications. We build a
little background that is useful to understand the mechanism of diffusion models by
analogy to classical mechanics.

3.1. Diffusion: Stochastic Particle Dynamics

In physics, diffusion is the process by which, for instance, ink spreads out in
water. If ink is released in a glass of water in one location, then it will over time
spread out until it is evenly distributed and we can no longer tell where it originated.
This process is undirected and stems from particles colliding on the length-scaled of
individual molecules. These unobservable collisions lead to ragged, seemingly random
paths on larger length scales. A thought experiments suggests that if we divide the
glass into two regions® and one contains much more ink than the other, then if we let
all particles bounce around for some time, every molecule of ink has a certain chance
to cross over to the other region. If there are more particles in one region than in the
other, we simply expect more crossings from the ‘high concentration’ region to the
‘low concentration’ region.

Mathematically, we want to model particle trajectories by a stochastic differential
equation for the location X = (x,y, z) of an individual particle like

dX
% :'U(t,X) +Nt

where v is the local velocity of the fluid (this plays an important role for instance if we
drop ink into the glass from some height). We do not directly model collisions between
particles we cannot observe, but rather use some type of ‘random noise’ N;. Unfortu-
nately, to make this rigorous with realistic ‘Brownian motion’ noise N; = v/2 o dB,/dt,

5 In our head, not physically influencing the glass.

DIFFUSION MODELS

we would need some familiarity with advanced probability theory.® However, we can
make a good approximation

dX, = v(t,X,)dt+ V20 dB, & X(t+71) = X({t)+70(t, X(t) +V2r0 B, (1)

where B; is a random vector with entries that are all independent samples of a stan-
dard normal distribution. The velocity v gives us a ‘drift’ component and the noise
induces oscillations of mean zero with the parameter o governing the noise intensity.

3.2. Diffusion: Particle Densities

Knowing the exact location of every particle of ink is neither possible nor useful
to a physicist. Instead, we are interested in ‘macroscopic’ averages, like the density
of the ink in water/the ‘hue’ of the mixture. The question is, if we know the initial
density of ink in the glass and the velocity field v of the mix, how do we find the
distribution of ink at a later time? Or, knowing the microscopic physics, how do we
predict the behavior of macroscopic or mesoscopic averages?

A simple example lends some insight. For now, let us ignore the fact that the water
is in a glass, but allow an ink particle to travel on the entire space. Additionally, we
assume that the macroscopic velocity v is zero, meaning that random motion is the
only physical process going on. In this case, the probability of finding the particle
which started at the origin in a region of space A at time ¢ > 0 is given by a normal
distribution (on RY) with mean 0 (i.e. the most likely location to find a particle remains
at its starting point) and independent coordinates (movement in z-direction does not
affect movement in y-direction). The variance is simply given by ¢. Specifically:

P(z; € A) = / o exp —M dx.
4 (2mt)4/2 2t
ll]]

Experienced mathematicians will recall the density function ¢(¢,x) = W@‘ 2t

2

from a different context: this is the heat kernel, a particularly useful solution to the
heat equation

Ou = Au = ((‘Ll('?ml + e+ 8%(91")%

The heat equation is a partial differential equation which models the spread of heat in
a medium and — owing to the connections we discussed — the diffusion of one a hy-
drophilic fluid in aqueous solution. More generally, if particles evolve due to stochastic
dynamics dX; = v, dt + v/20dB; and are initially distributed with some probability

6 Specifically, Itd’s stochastic integration theory. In keeping with the standard notation from this
field, we formally multiply the differential equation above by dt.

STEPHAN WOJTOWYTSCH
density pg, then this density evolves according to the Fokker-Planck equation
Oip = o* Ap — div(pv).

We assume that the diffusion coefficient ¢ is constant throughout the domain for
simplicity, but density p and velocity v may of course depend on time ¢ and position

2.7

3.3. Particle systems and their densities

Knowing the location of ink particles tells us the density of ink in water, and
knowing the density, we can at least infer how many particles we should expect
within a certain area. Similarly, knowing how the particles move tells us how the
densities change. The converse is emphatically not true: For example, the population
of the City of Pittsburgh has declined most years between 2000 and 2025 [Fra25], but
this does not mean that people only moved away from Pittsburgh during this time
period. Similarly, the population of a city holding steady does not mean that people
are not moving there or away; it only means that the rates of change balance. These
simple macroscopic averages may fail to tell us the true dynamics happening.

We call this a ‘dynamic equilibrium’: Our macroscopic view does not change, but
on a smaller scale, people (or particles) are moving around.

4. Diffusion Models

Diffusion models combine ideas from sampling and the physical process of diffu-
sion. We start with two observations:

1. We can create convincing ‘random’ samples from a standard normal distribu-
tion, even in high dimension.

2. Under diffusion dynamics 0,p = Ap, every initial probability distribution pg
eventually approaches a standard normal distribution in the limit ¢ — oc.

Now, can we reverse the process to go backwards in time from the standard normal
distribution to the initial probability distribution? This should enable us to use

7 The Fokker-Planck equation is also known as the Kolmogorov forward equation of the process.
The related Kolmogorov backward equation governs the time evolution of u(t,z) = E[f(X;) | Xo = z].
We can derive the backward equation from It6’s formula in stochastic analysis and get the forward
equation as a consequence by partial integration — this is where the minus sign comes from. For the
‘diffusion term,” we integrate by parts twice (no minus), for the ‘drift term’ we integrate by parts
only once. Itd’s formula is essentially a chain rule which takes into account stochastic fluctuations
as well.

DIFFUSION MODELS

-4 -2 0 2 4 6 8 10 12

Figure 1: Three different ways to connect normal probability distributions by paths
of probability distributions. The first two paths are ‘horizontal’: every distribution
along the path is normal, just the means and variances are evolving. The third path
is ‘vertical’: one distribution disappears, the other one rises. Distributions along the
path are Gaussian mixture models. The horizontal paths can be realized by physical
‘particle dynamics’ as the law of traveling particles, while a ‘vertical’ path may re-
quire particles to teleport or move in an unphysical fashion.

Knowing the path of the probability distributions does not indicate the particle dy-
namics: They could travel orderly left to right, or they may be bouncing around in a
way that ‘averages out’ suitably.

the same strategy as before and transform sample points drawn from the normal
distribution into samples from py. We visualize paths in the space of probability
distributions in Figure 1.

4.1. A path in the space of probability distributions

If we deform any probability distribution to the standard normal distribution by
the same physical dynamics, reversing this process must be highly unstable. If the
endpoint is always the same, it must be hard to work back from there to figure out
what the initial input was. We cannot rely on ‘general’ physics, but we need to
integrate some more information about where we came from or along which path we
traveled.

Assume that pg is any probability density on R? and consider the diffusion of py
by the partial differential equation

Op =Ap+ V- (pzr) forall timest >0 and z € R?
P =Dpo at time ¢t = 0 and for all z € R?.

Let us consider how the evolution looks ‘backwards in time.” When we consider
q(t,z) = p(T —t,x) for some fixed time 7" > 0, we have

dq(t,x) = =0ip(T —t,x) = =Ap(T — t,x) =V - (px) = —=Aq(t,z) = V - (q2).

STEPHAN WOJTOWYTSCH

Generated data: Deterministic Generated data: Stochastic Particle trajectories: Deterministic

0 0 0 » ce =

o ° 9 ? e '\ e /\ |
B \/ B v - N~
-2 -2 2 N

Figure 2: Sampling from a ‘two moons’ type dataset with 5 = 0 (left) and g =1
(middle). The terminal time in this simulation was 7" = 3, and the ODE and SDE
were resolved with step size 7 = 0.01. On the right, we see the trajectories from
the initial random point (blue dot) to the region where data lives. The ‘backwards’
trajectories are deterministic (i.e. § = 0).

Unlike the heat equation 0;p = Ap, the backwards heat equation 0,¢ = —Aq is highly
unstable, and solutions tend to ‘blow up’ in finite time, both in theory and compu-
tations. On a physics level, we are trying to ‘undo’ collisions with small particles
that are invisible to us, a task doomed to fail. Luckily, we have an alternative way of
writing the equation: note that

Aq(t,x) =Ap(T —t,z) =V -Vp=V"- (p%) =-V- (leogp) =V. (quogp)

where we evaluate both p and ¢ at the same point z, but different times T'—t and ¢
respectively. We can therefore write

g =pBAg—V - (q[(1+B)Viogp+ z]) (2)

for any constant § (which may even depend on time) — however, the useful regime is
£ > 0 for which the PDE is stable. The vector-valued function sc(t, z) = V logp(t, z)
of space and time is important enough that it receives its own name: the score
function. On a philosophical level, keeping track of the score function along the
diffusion forwards in time allows us to reverse the dynamics after since it encodes
‘where we came from.’

4.2. Particle trajectories and sampling

We now have a model to connect the probability distributions: for the forward
dynamics, we solve the diffusion equation with drift. For the backward dynamics, we
choose some time 7' > 0 at which p(7’, x) is close enough to the density of a normal

DIFFUSION MODELS

distribution and a parameter 8 > 0 and solve the partial differential equation

dqg =BA—V - (q[(1+B)se(T —t,x)+a]) for0<t<T
g = standard normal at t = 0.

So far, this is not useful: the probability distributions on the high-dimensional space
are inaccessible to us. Luckily, this partial differential equation has a form that is quite
familiar to us by now: we can interpret ¢ as the distribution of randomly evolving
particles according to probabilistic dynamics evolving by the stochastic differential
equation

dZ; = (Zy+ (1 + B) se(T — t, Z)) dt + \/23 dB,

which we can discretize by taking a small time-step of size 7 > 0

Ziwr = Zi+7(Zi+ (1+ B) se(T — t, Zy)) + /287 B,

with random noise B; (a standard normal distribution in d dimensions which is inde-
pendent of everything else). This gives us a whole family of ways to evolve a particle
starting at a random location according to a standard normal distribution to a point
which, at terminal time 7T for the backward process, becomes a random sample from
the initial distribution py.

As we noted earlier, the evolution of the distribution does not determine particle
trajectories.® We have a diverse family of sampling methods: deterministic (3 = 0)
and with varying levels of stochastic dominance (depending on how large we choose
B > 0). Deterministic sampling is easier and produces good individual samples, but
stochastic sampling is more likely to truly explore a data distribution. The better
method may depend on the application — how fast is a sample needed, and what is
the computational budget?

We show samples generated by a diffusion model with 5 = 0 (deterministic) and
B = 1 (stochastic) in a simple two-dimensional example in Figures 2 and 3. In all
cases, we draw 40 random points and let them evolve by the ordinary differential
equation or stochastic differential equation to generate realistic samples.

4.3. Where does ML come in?

So far, we have not talked about machine learning. We have an inexact method
(since we use a finite terminal time 7" and small time steps instead of continuous time
analysis), but nothing had to be learned.

Diffusion models are considered a method of deep learning because we need to
know the score function sc(t,z) = Vlogp(t,z), which we need to ‘learn,” and the

8 An excellent visual illustration in a similar context can be found in Figure 1 of [ABVE23].

STEPHAN WOJTOWYTSCH

Generated data: Stochastic (one trajectory) Generated data: Stochastic (another trajectory) Generated data: Stochastic (a third trajectory)

2 2 2 S
1 //'\\ . //-\\ 1 "/ \
2 y 'j i) . e ‘}'Q' '
n ‘ SR o | 0
3 : % -%r
’ G . 2
3 . 3

Figure 3: Three stochastic paths for § = 1. We can tell that the paths explore a
larger part of data space. The second trajectory illustrates that even if we start close
to the dataset, we may end up with a sample in an entirely different part of the data
region.

power of the function class of neural networks makes this possible. In principle, we
would have access to an expression for the score function using the dataset as an
estimator, but using it directly is infeasible for large datasets.

To ‘learn’ the score, we would like to select a neural network f with tunable
parameters # and minimize an average discrepancy between the score and the neural
network output such as

Loss(0) = /0 /Rd 1 £(0;t,) — se(t,z)||* p(t, x) da dt.

This loss function cannot be evaluated without the score, which is the very object we
are trying to learn! Conveniently, this can be reformulated in a way which we can
approximate numerically, even without ever solving the forward diffusion! Specifically,
we can show that

/]Rd | f(0;t,x) — sc(t, a7)||2 p(t, z) dx
1

1 . —t _
:(27r)d/2/Rd/Rd f(é), t,e'rg+v1l—e 2t2>+ 1_6_%2

for some constant which does not depend on the parameter . Because of this, the two

po(x)e”

|E

> dz+C

minimization problems are equivalent in the sense that they have the same minimizers!
This is all we need. In particular, we can proceed as follows: For a fixed ‘batch size’
k:

e sample times tq,...,t (for instance from a uniform distribution on [0,77] for
large enough T'),

e sample & data points (), ...,z from the original dataset, and

10

DIFFUSION MODELS

e sample k points 21, ..., z; from a standard normal distribution on the d-dimensional
space RY.

Use the proxy minimization problem

- 15

to nudge the parameters 6 in the right direction. Everything in this problem can be

2

, 1
f (0; ti e Yayp + V1 — e—%‘zj) + W= z;

T

computed efficiently — the trick is to evaluate the neural network at the modified
point e~ x;(;) + V1—e 2 zj in the data domain. Repeating this over many iterations
with many different samples, we perform a ‘stochastic gradient descent’ to train the
parameters of our neural network so that its outputs are a good approximation of
the true score function. This is the only place where deep learning comes in —
diffusion models are not inherently neural-network based, but in practice, we need
their approximation power.

For the reader’s convenience, we explain the equivalence of the minimization prob-
lems in more detail in the Appendix, based on [CCL*22, Appendix A].

4.4. An open question

Diffusion models are a fairly recent addition to the toolbox of machine learning,
and we still do not fully understand details of their inner workings. For instance, if
we were to ezxactly solve the backwards dynamics for sampling, then we would end
up with a sample from the original distribution, which in our case is the ‘empirical
distribution’ of the dataset. In other words, we would just randomly select one of our
data points as the random sample.

Evidently, this is not what is happening in diffusion models which can generate
authentic new data. However, why we make a large enough error in the backwards
dynamics to produce a novel sample, but a small enough error to produce a reasonable
sample, remains mysterious.

5. Summary

Diffusion models are a tool of generative Al which takes inspiration from the
physical process of diffusion and finds a way of reversing it on the distribution level.
For many of us, the first introduction to diffusion models we find uses images like
Figure 4. This kind of image is a lie: reversing diffusion on the particle level is
impossible since the forward diffusion is stochastic. If we find a piece of pigment in

11

STEPHAN WOJTOWYTSCH

Forward diffusion/noising

Backward diffusion/denoising

Figure 4: This image is an inaccurate simplification: we cannot reverse particle
trajectories/the noising of images — what we can do is design processes which take
noise as input and generate ‘reasonable’ images as output.

the glass of water after some time, there is no way of reconstructing where it started
its journey.

On the other hand, it is possible to find (unphysical) dynamics with a velocity
field stemming from the score function along the forward diffusion that allows us to
reverse the path of the ink cloud. These distribution level dynamics can be interpreted
as (deterministic or stochastic) trajectories of particles — however, they are not the
paths of diffusing particles backwards in time. A more accurate depiction is given in
Figure 5.

This perspective of thinking about distributional dynamics which can be dis-
cretized by particle dynamics is also the basis for a general class of models which
takes a step away from physical diffusion dynamics, but gives the user additional
flexibility [ABVE23].

6. How do I learn more?

One of the best places to become familiar with stochastic differential equations is
in classes on Financial Mathematics, where asset prices are modeled by stochastic dif-
ferential equations. While the details vary between applications, the foundations are
the same for applications in statistical mechanics, financial markets, and generative
AT models.

At a high level, diffusion models combine ideas from stochastic analysis, partial

12

DIFFUSION MODELS

Forward diffusion/noising

Backward diffusion/denoising

Figure 5: This figure is more accurate. We can reverse the process by which all
images are mapped to noise and find multiple processes which take random noise as
a starting point and generate a reasonable picture. However, at least the forward
diffusion is stochastic (and also the backwards process in some models). There is no
way of undoing the noising process per image, and we do not have fine control over
which image is generated.

Curiously, the backward process may be deterministic and in a way more regular while
the forward process is always stochastic.

13

STEPHAN WOJTOWYTSCH

differential equations, and statistical mechanics with machine learning models. By
necessity, we glossed over many of the details. For any program in applied mathemat-
ics, learning about differential equations, probability theory, and statistics to fill in
the missing parts is a great idea. Learning numerical methods and practicing coding
skills is essentially to put theory into practice.

Conceptually, diffusion models are a tour de force. We take inspiration from
classical physics for an extremely high-dimensional application in data science and
seamlessly pass back and forth between a PDE model for the density and an SDE
model on the particle level. The foundational underpinning is a way to connect to
probability distributions by a path in the (infinite-dimensional and non-linear) space
of probability distributions. Another useful topic to learn more about the admittedly
abstract underpinnings of this and other classes of generative Al models (Wasserstein-
GANSs, flow matching) is therefore the theory of optimal transport.

Diffusion models are a fairly new method of machine learning and still the subject
of active research. While they are covered in newer textbooks, any source published
before 2022 is unlikely to contain much (or any) information on them. In a rapidly
evolving field, perspectives shift, and at the fore-front of research, ideas always out-
pace introductions. This makes it crucial to focus on understanding concepts and
foundations: benchmarks may fall, and models will change, but concepts last — and
every once in a while, knowledge in an unrelated field of physics may inspire a powerful
new method in a totally different field like Al

A. A computable loss function minimized by the score

As a starting point, assume that we want to minimize a time average of
Loss(0) = / | £(0;t,2) — sc(t,z)|” p(t,z) da (3)
R4

where p(t,z) is the probability density of the evolving particles — in other words,
we count the discrepancy between the output f(6;t¢,z) of our neural network with
parameters 6 and the true score function sc(t, x) more in regions of higher probability,
and we are okay with larger errors in the output in regions we don’t expect to visit
anyways. Other choices would be possible, but this one will turn out to have good
properties. A time average could be

T oo
Loss(0) = / Loss(0) dt or Loss(f) = / Lossy(0) e " dt
0 0

or similar — the differences are not important for us and we focus on fixed time t.

Our goal is to find a function Loss; which is computable — this is important since our

14

DIFFUSION MODELS

entire problem is that we do not know sc — and has the same minimizers as (3).

We start by expanding the square:

Lossi0) = [(If0:t.0)* = 2£0:0.0) - sclt,)) plt.) dot | [selt,)| plt) da

—C

The constant C' does not depend on 0, for the purposes of minimization problems we
can ignore it and focus on the left two terms. We will leave the first one alone as it
already has the right form and focus on the cross term instead. Recall that

sc(t,x) = Viog(p(t,z)) = Vp(t,z) = f(0;t,x)-sc(t,x)p(t,x) = f- Vp.

p(t,)
We now use the product rule for the divergence operator and the divergence theorem
from Calculus 3 for integration by parts. We do this on the whole space and without
boundary terms (we can show that under reasonable assumptions p(t, x) goes to zero
as |z| — oo so fast that the boundary terms disappear if we apply the theorem on
larger and larger balls).

f@;t,x) - sc(t,z) p(t,x) doe = f(0;t,x) - Vp(t,z)dx
R4 R4

= /Rd div(p(t,w)f(@;t,x)) —p(t, x) div(f(@;t,a:)) dx
= — /]Rd div, (f(0;t,2)) p(t, z) da.

So, an equivalent minimization problem that does not involve the score function
directly would be for

—_—~—

Tosss(0) = /R (1£ 0 t,)2 + 2div(F(6;8, 2))) plt, z) da

However, this problem is still costly to solve since it involves the derivatives of f with
respect to all d coordinate entries of f, which is very time-consuming to compute for
neural networks. Even worse, we need to integrate with respect to the probability
density p(t, x), which requires us to solve a partial differential equation... We therefore
keep looking for a better equivalent loss.

Let us turn our attention to p(t,z) — this will allow us to solve both problems at
once. Using PDE theory or stochastic analysis, we find that

dz

/Rd div, (f(0;t,2)) p(t, z) do = / div, (f(0;t, e *2’+V1 — e722)) po(2’) da’ ‘

o Ptk

where the point z is replaced by a weighted sum between a normally distributed point

15

STEPHAN WOJTOWYTSCH

z and a point z’ drawn from the initial distribution py. Fully deriving the expression
goes a bit beyond this article, but we note the similarity to the heat equation without
the drift term, where solutions can be written as averages of ug weighted by suitable
normal distributions.

For the integral of a divergence with respect to a normal distribution, we recall
that

/R v f() ¢ Qﬂl)d el =~ [() el (2;)(1/2 az

or in simpler terms
[ty = [G)-za
R R4

where we use the shorthand d for the integral with respect to the ‘Gaussian’ (normal)
distribution as above. Thus we can finally rewrite

/ dwm(f(ﬁ;t,x))p(t,x)dx:/ / div(f(@;t,eit:ijvl—e—Qtz))po(:L’)d%dx
Rd R4 JRA
-t —e %z ;z x)dx
:/Rd/Rdf(Q,t,e r+ V1 2) Vit d~y, po(z) dz.

The factor in front of the divergence comes from the chain rule (div(f))(az) =
L div(f(ax)). We have thus eliminated the divergence from the computation at the
cost of a double integral in place of a single integral. Given that we only approximate
integrals by computing averages over batches of data points and random Gaussian
noise for z (a variant of Monte-Carlo integration), this is a minor cost in practice.
Overall, we find that

Lossy(0) = /R (1£0: £, 2)|> — 2£(8: . 2) - se(t,)) plt, 2) dee + C

= [[(1t — 25 0itg(0.0.2) <) el o €
A

—= dvy, po(x)dx + C
for another constant C from completing another square — again, the constant does not

depend on # and is therefore irrelevant to our minimization problem. The equivalent
loss function we use is

2

F(O0:,6(t, 2, 2)) — ———| d. po() do

1 —e2

16

DIFFUSION MODELS

which we can estimate efficiently by producing data samples as outlined above. This

equivalence enables us to use diffusion models in practice.

[ABVE23]

[CCL*22]

[Fra25]

[SSDK+20]

References

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochas-
tic interpolants: A unifying framework for flows and diffusions. arXiv
preprint arXiv:2303.08797, 2023.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and
Anru R Zhang. Sampling is as easy as learning the score: Theory
for diffusion models with minimal data assumptions. arXiv preprint
arXiw:2209.11215, 2022.

Julia Fraser. City of Pittsburgh population grew in 2024, adding nearly
3,000 new residents. 90.5 WESA, 15 May 2025.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar,
Stefano Ermon, and Ben Poole. Score-based generative modeling through
stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

Stephan Wojtowytsch
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA
Email: s.woj@pitt.edu

© 2026 Wojtowytsch. This open-access article is licensed under CC BY 4.0.
Pittsburgh Interdiscip. Math. Rev. is managed by undergraduate students from the University of Pittsburgh and
Carnegie Mellon University, and is published electronically through the University of Pittsburgh Library System.

17

https://creativecommons.org/licenses/by/4.0/
https://www.library.pitt.edu/

	Introduction
	Sampling in Statistics
	Stochastic Analysis and Partial Differential Equations
	Diffusion: Stochastic Particle Dynamics
	Diffusion: Particle Densities
	Particle systems and their densities

	Diffusion Models
	A path in the space of probability distributions
	Particle trajectories and sampling
	Where does ML come in?
	An open question

	Summary
	How do I learn more?
	A computable loss function minimized by the score

