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Beach Math

Problems to do in San Diego, USA

Isaac Li

What is Beach Math?

Winter storms are coming and going, but we’re on a beach trip in San Diego.

I’m sitting on the sand with my partner, watching the sunlight sparkle across

the sea. The playful shouts of kids and the low rumble of boats blend softly

with the waves. Everything feels peaceful. I am pretty sure this is the kind of

moment where a normal person would say something very romantic. My brain

thinks about this for a second and decides, with great confidence, the correct

answer is MATH. Obviously. Suddenly, three problems pop into my head, all

perfectly tailored to this beach. Each one is simple to state but seems hard at

first. Once the key idea clicks, the solution collapses into a short chain of steps

you can comfortably keep in your head. I love them, and I am optimistically

assuming my partner will too. If you were on the beach with us, I suspect

you would enjoy them as well. To me, that is Beach Math: small, interesting

puzzles that sneak into a holiday and somehow still count as “relaxing.”
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1. Problems

1.1. Calm Waves

Problem. While walking along a quiet beach, you discover an old salt-worn leather

pouch. Inside are 45 magical pearls of three colors, red, blue, and green, with the

following distribution:

R = 13, B = 15, G = 17.

You soon figure out the following magic rule: Whenever you take two pearls of differ-

ent colors and rub them together, they both turn into the third color. The ocean-blue

pearls are your favorite. You wonder: what is the maximum possible number of blue

pearls you can end up with using the magic rule?
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1.2. Rough Waters

Problem. After a long day on the beach, you feel tired and decide to take a relaxing

ride around the island. Consider a circular road around the island with n gas stations

labeled 1, 2, . . . , n in clockwise order. At station i, your car can refuel gi units of gas,

and it requires ci units of gas to drive from station i to station i + 1 (with station

n+ 1 identified with station 1). Assume that gi, ci ≥ 0 for all i and

n∑
i=1

gi ≥
n∑

i=1

ci.

Show that there exists a station k such that if you start at station k with an empty

tank, then by repeatedly refueling at each station and driving to the next one, you

can travel once around the island back to k without ever running out of gas.

Hint. Further than existence, can you design an algorithm that quickly finds such a

starting gas station?
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1.3. Tsunami

Problem. It is late in the evening and you are helping to tidy up a long row of beach

umbrellas. As you walk along the shore, you notice that every umbrella has a different

height above the sand. The umbrellas rise and fall messily, but still you observe

something more general: whenever you walk past more than n2 beach umbrellas, you

can always find more than n umbrellas so that, reading them in their order along the

row, their heights either strictly go up one by one or strictly go down one by one.

Can you prove that this pattern always shows up?
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2. Solutions

2.1. Calm Waves

Intuitive idea

With some tries, it is easy to find a sequence of moves that gives 44 blue pearls,

but it seems very hard to reach all 45 blue. This suggests we should try to prove

that 45 blue pearls are impossible. To do that, we look for a quantity that stays

unchanged under every move and then use a contradiction: If the all–blue state had

a different invariant value from the start, it can never be reached.

Details

First, it is possible to find a state with 44 blue pearls. From

(R,B,G) = (13, 15, 17)

perform one move B + G → R + R to get (15, 14, 16), then apply R + G → B + B

fifteen times. We end at

(R,B,G) = (0, 44, 1).

So 44 blue pearls is attainable.

Next, let’s prove that we cannot have all 45 pearls be blue. Define

I := R−G.

Check each move:

R +B → G+G ⇒ I ′ = (R− 1)− (G+ 2) = I − 3,

B +G→ R +R ⇒ I ′ = (R + 2)− (G− 1) = I + 3,

R +G→ B +B ⇒ I ′ = (R− 1)− (G− 1) = I.

Notice that in every move I ′ ≡ I (mod 3), which means R−G mod 3 is invariant.

At the beginning (before we start rubbing the pearls together),

Istart = 13− 17 = −4 ≡ 2 (mod 3).

If all pearls were blue, we would have (R,G) = (0, 0) and

Igoal = 0− 0 = 0 ≡ 0 (mod 3).

Since the value of R − G modulo 3 is invariant, a state with R − G ≡ 0 (mod 3) is

not reachable from a state with R − G ≡ 2 (mod 3). In particular, it is impossible
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to reach (R,G) = (0, 0), so at least one non–blue pearl must remain. Hence

R +G ≥ 1 =⇒ B = 45− (R +G) ≤ 44.

So the number of blue pearls can never exceed 44.
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2.2. Rough Waters

Intuitive idea

What a messy problem! Let’s just try something silly and design a simple greedy

algorithm to see if it works: Go once around the circular road in clockwise order and

see if we can find a good starting point. We keep a running fuel balance, and whenever

it goes negative, we declare that whole stretch hopeless and restart at the next station.

If this process somehow failed everywhere, then by the time we get back to where we

began, all stations would lie inside some “hopeless” negative segment. BINGO! That

would force the total net gain to be negative, contradicting
∑

gi ≥
∑

ci. Can we

rigorously prove that this algorithm works?

Details

Define the net gain at station i by

di := gi − ci (i = 1, . . . , n),

so di is the change in fuel after refueling at i and driving to i + 1. Our hypothesis

gives
n∑

i=1

di =
n∑

i=1

gi −
n∑

i=1

ci ≥ 0.

Below we describe a one-pass algorithm which returns a station index k such that all

running sums
∑i

j=k dj along one full lap are never negative. Interpreting these sums

as fuel levels shows that we never run out of gas.

Algorithm 1 Find a feasible starting gas station

1: start ← 1 {starting station}
2: balance ← 0 {running sum of di from start}
3: for i = 1 to n do
4: balance ← balance + di
5: if balance < 0 then
6: start ← i+ 1 {discard old candidate; try the next station}
7: balance ← 0
8: end if
9: end for
10: return start {this will be the desired station k}

Now, we will prove that this algorithm actually returns the desired station index.
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Let

P0 := 0, Pℓ :=
ℓ∑

i=1

di (ℓ = 1, . . . , n),

so that Pn =
∑n

i=1 di ≥ 0 and, for any 1 ≤ a ≤ b ≤ n,

b∑
i=a

di = Pb − Pa−1.

During the algorithm, suppose that at some iteration i, we reset the candidate

starting point from start = s to i+ 1. Just before this reset, we have

balance =
i∑

j=s

dj = Pi − Ps−1 < 0,

so Pi < Ps−1. Thus each reset produces an interval [s, i] with negative total sum, and

the prefix sum Pi at the end of that interval is strictly smaller than the prefix sum

Ps−1 at its beginning.

Because the indices i run in increasing order, these negative-sum intervals [s, i]

are disjoint and lie in {1, . . . , n}. If the algorithm were to finish with start = n + 1,

then these intervals would cover all of {1, . . . , n}, and we would get

Pn =
n∑

i=1

di < 0,

contradicting Pn ≥ 0. Hence the returned value must satisfy 1 ≤ start ≤ n. Let k

denote this final value of start.

We next observe what this means for the prefix sums. At the very beginning, the

current candidate is 1 and the smallest prefix sum seen so far is P0 = 0. Whenever

we reset from s to i+1 we have seen that Pi < Ps−1, so Pi becomes the new smallest

prefix sum encountered up to index i. At the end of the loop, when start has its

final value k, the corresponding prefix sum Pk−1 is therefore a global minimum:

Pk−1 ≤ Pℓ for all ℓ = 0, 1, . . . , n.

Now consider driving once around the circle, starting at station k with an empty

tank, in the cyclic order

k, k + 1, . . . , n, 1, . . . , k − 1.

We check that the fuel level never becomes negative.
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For any index i with k ≤ i ≤ n we have

i∑
j=k

dj = Pi − Pk−1 ≥ Pk−1 − Pk−1 = 0.

For an index i with 1 ≤ i ≤ k − 1, the cumulative gain from k to i around the circle

is
n∑

j=k

dj +
i∑

j=1

dj = (Pn − Pk−1) + Pi.

Here Pn ≥ 0 by the global assumption, and Pi ≥ Pk−1 by minimality of Pk−1, so

(Pn − Pk−1) + Pi ≥ 0.

Thus every cyclic prefix sum starting at k is nonnegative.

Interpreting these cyclic sums as fuel levels, we see that starting at station k with

an empty tank, the fuel level never drops below zero during a complete lap. Therefore

k is indeed a feasible starting gas station.
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2.3. Tsunami

Intuitive idea

At first this feels like magic. Why should having more than n2 umbrellas force a

tidy row of more than n going up or down? The key trick is to stop looking at the

whole row at once and instead let each umbrella keep a tiny “scorecard”: how long

of an increasing chain can end here, and how long of a decreasing chain can end here.

So each umbrella gets a pair (I,D).

If we assume there is no increasing or decreasing chain of length more than n,

then each of the two scores has to be between 1 and n, which means there are at most

n2 different pairs (I,D) in total.

But once you have more than n2 umbrellas, the pigeonhole principle says two of

them must share the same pair. Hmmm, I wonder if that gives some contradiction.

Details

Let there be m umbrellas in the row, with m > n2. Number them from left to

right as

U1, U2, . . . , Um,

and let hi be the height of umbrella Ui. All heights are distinct.

For each position i, we look at subsequences that end at Ui and define:

• I(i): the length of the longest strictly increasing subsequence of heights that

ends at Ui,

• D(i): the length of the longest strictly decreasing subsequence of heights that

ends at Ui.

So each umbrella Ui gets a pair of positive integers (I(i), D(i)).

If there is some i with I(i) ≥ n + 1, then there is an increasing subsequence of

more than n umbrellas (their heights strictly increase as you walk from left to right),

and we are done. Similarly, if there is some i with D(i) ≥ n + 1, then there is a

decreasing subsequence of more than n umbrellas, and we are done.

Therefore, to get a contradiction, assume that no such subsequence exists. Under

this assumption, we must have

1 ≤ I(i) ≤ n and 1 ≤ D(i) ≤ n

for every i. So each pair (I(i), D(i)) lies in the n× n grid

{1, 2, . . . , n} × {1, 2, . . . , n},
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which contains exactly n2 different pairs.

Now we claim that no two different umbrellas can have the same pair. In other

words, if i ̸= j, then

(I(i), D(i)) ̸= (I(j), D(j)).

To see this, suppose i < j. Since hi and hj are different heights, either hi < hj or

hi > hj.

Case 1. hi < hj. Take the longest increasing subsequence that ends at Ui; it has

length I(i). Because hj is taller than hi, we can append Uj to this subsequence and

get a strictly increasing subsequence that now ends at Uj, of length I(i) + 1. Hence

I(j) ≥ I(i) + 1 > I(i),

so I(j) ̸= I(i), and thus (I(i), D(i)) ̸= (I(j), D(j)).

Case 2. hi > hj. Now take the longest decreasing subsequence that ends at Ui; it

has length D(i). Since hj is shorter than hi, we can append Uj to this subsequence

and obtain a strictly decreasing subsequence ending at Uj of length D(i) + 1. Thus

D(j) ≥ D(i) + 1 > D(i),

so D(j) ̸= D(i), and again (I(i), D(i)) ̸= (I(j), D(j)).

In both cases, the pair attached to Uj differs from the pair attached to Ui. There-

fore all the pairs

(I(1), D(1)), (I(2), D(2)), . . . , (I(m), D(m))

are distinct.

But this is impossible: we have m umbrellas and only n2 different pairs available

in the n × n grid. Since m > n2, the pigeonhole principle says two umbrellas would

have to share the same pair, which contradicts our claim.

Thus our initial assumption was wrong: at least one of the numbers I(i) or D(i)

is at least n+1, and so among the more than n2 beach umbrellas there always exists

a subsequence of more than n umbrellas whose heights are either strictly increasing

or strictly decreasing along the shore.
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