

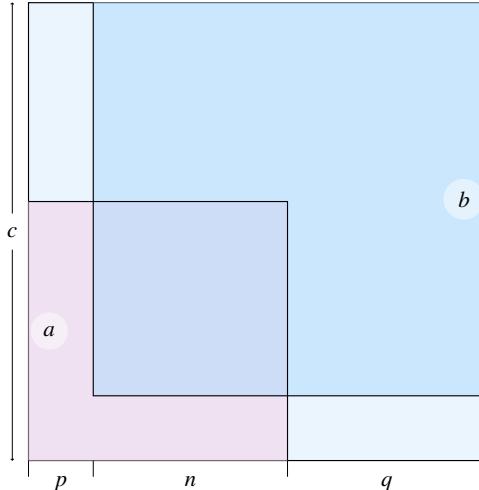
Proofs Without Words

Series 4

Paul Gartside

(Communicated by Stephan Mirtchev)

A 2×2 Determinant is the Area of a Parallelogram.


A triple (a, b, c) of natural numbers is Pythagorean if $a^2 + b^2 = c^2$.

Theorem. There is a bijection between Pythagorean triples (a, b, c) and factorizations of even squares, $n^2 = 2pq$.

$$c^2 = a^2 + b^2 - n^2 + 2pq \\ \therefore c^2 = a^2 + b^2 \iff n^2 = 2pq \quad \square.$$

Corollary. There are infinitely many Pythagorean triples.

Enumerating the Pythagorean triples.

Paul Gartside is a professor of mathematics at the University of Pittsburgh. Their email address is gartside@math.pitt.edu.

© 2026 Gartside. This open-access article is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).

Pittsburgh Interdiscip. Math. Rev. is managed by undergraduate students from the University of Pittsburgh and Carnegie Mellon University, and is published electronically through the [University of Pittsburgh Library System](https://libarts.pitt.edu/pubs/pimr/).